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Chapter 1

BASIC CONCEPTS

1-1 INTRODUCTION

The coupling of electromagnetic fields between isolated regions
through one or more apertures is a widely encountered problem in elec-
tromagnetics. Some examples are cavity-to-cavity coupling, waveguide-
to~waveguide coupling, wavegulde-to-exterior space coupling, and so on.
The general problem consists of two or more regions of space coupled by
one or more apertures. There can be sources in one or more regions,
and material bodies in one or more regions. Figure 1-1 shows a typical
problem of two reglons coupled by an aperture. For this example, it
is assumed that sources exist in region a, and a material body exists

in region b. The boundary of the regions is considered to be a perfect

conductors

Y

region b
/‘ region a
/7
sources material
body
aperture

Fig. 1-1. A typical aperture coupling problem.
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electric conductor, but other types of impermeable boundaries may be
used. Each region may be closed, as region a is shown in Fig. 1-1, or
may be open (extend to infinity), as region b is shown.

The present chapter is intended to serve as a short summary of
the principal relationships and notation that we use throughout the
report. For some readers this should be only a quick review. Others,
less familiar with electromagnetic theory, should refer to some of the
well~known textbooks [1] to [7]. (Bracketed numbers denote references

which are listed at the end of each chapter.)

1-2 FIELDS AND SOURCES

For our purposes, the electromagnetic field is expressed in terms
of two vectors:

- the electric field

ltm

H - the magnetic field

The source of the field may be of two types

=

- the electric current

M - the magnetic current

We use these symbols for both volume densities and for surface densities.

It should be clear from the text or equations which density is meant.
The medium j> which the field exists is characterized by three consti-

tutive parameters.

€ - the permittivity or capacitivity
U - the permeability or inductivity

0 - the conductivity




R o o

- BT e U

3
€ and U may be complex to allow for energy dissipation, in which case ©
need not be shown explicitly.
In any region of space for which E and H are differentiable, the
field satisfies the Maxwell curl equations
VYxH=jwcE+J J
(1-1)
-UxE=juu B+ M
:l
where V X is the curl operator and w is the angular frequency. The diver- l
gence of (1-1) yinlds the Maxwell divergence equations
VeeE=gq
(1-2)
Ye+ul=m

where V + is the divergence operator and the two scalars are

q - the electric charge density

m - the magnetic charge density

These are related to the electric and magnetic currents by the equations
of continuity

VeJ=-jug
(1-3)

VeM=-jum
Here the symbols q and m denote volume densities, but we use the same
symbols for surface densities. It should be clear from the text and
equations which density is meant.
In any region that is source-free (J = M = 0) , linear, and
homogeneous (¢ and u independent of position), the curl of equations

(1-1) leads to the vector Helmholtz equations




-VUxVxE+KkK'E=0
(1-4)
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where k = w/ey is the wavenumber. The rectangular components of E and H

satisfy the scalar Helmholtz equation

vZE, + K2E, = 0
i i
(1-5)
2 2. _
VHi+kHi 0

where i = x, y, or z. In addition to (1-5), the vectors must satisfy

VeE=0and V + H=0.

1-3 POTENTIALS

It is often convenient to express the electromagnetic fields in
terms of auxiliary functions, called potentials. In a homogeneous

region we have the representation

E="-Jua -V

(1-6)
1
H==VxA
=Tyxrra
where the potentials are
A - the magnetic vector potential
¢ - the electric scalar potential
The potentials A and ¢ satisfy the Lorentz gauge
VA=~ juued 1-7

which 1is analogous to the equation of continuity (1-3). Potentials with

other gauges are sometimes useful, but we do not consider them in this

report.




Alternatively, the field in a homogeneous region can be represented

as
1
E=-2VXF
(1-8)
H =~ juF - W
where the potentials are
F - the electric vector potential
Y - the magnetic scalar potential
The potentials F and Y also satisfy the Lorentz gauge
Ve F = - juuey (1-9)

The potentials F and ¥ are said to be dual tothe potentials A and 9.
In general, the field in a homogeneous region can be represented

as a superposition of (1-6) and (1-8), or

™ |
1<q

X

i

E=- F-JuA -V
(1-10)

}i:

h=R
<
X
>

A - JwF - W

In a source-free homogeneous region, the rectangular components of A and F

and the scalars ¢ and ¢ satisfy the Helmholtz equation

Vzﬂ + kzn = 0 (1-11)

When one solution of (1-11) is taken for a rectangular component of A,
and another solution of (1-11) is taken for a rectangular component of F,
the potentials are sometimes called Hertzian potentials.

One advantage of using potentials is that the conditions \ « E = 0
and V *+ H = 0 are automatically satisfied. Another advantage is that the
potentials can be simply related to the sources, as we show in the next

section.




1-4 POTENTIAL INTEGRALS

Given an electric current J and its associated electric change g
in an infinite homogeneous medium characterized by p and ¢, the potential

integrals are

u HJ J(x') G(x,r")dt’

1>

Uam)

Iz
]

(1-12)

]

163) ém a(z') 6(x,r"dt’

where the free space Green's function G is

o~iklr-r'|

G(x,r') = -ZEWEEGETT— (1-13)

In (1-12) and (1-13), r is the radius vector to the field point and r'
is the radius vector to the source point. The sources J and q are con-
sidered to be volume densities in (1-12), as evidenced by the triple
integral sign with dT1' representing a volume element of integration.
If the current and charge are surface densities, it is merely necessary
to change to a surface integration, and similarly for line densities.

The electromagnetic field associated with A and ¢ is given by (1-6).

The charge q is related to the current J by the equation of continuity (1-3).

For the dual case of a magnetic current M and its associated mag-
netic charge m in an infinite homogeneous medium characterized by € and u,

the potential integrals are

i
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F(r)
(1-14)
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where the Green's function G is again given by (1-13). The electromagnetic
field associated with F and ¥ is given by (1-8). The charge m is related
to the current M by the equation of continuity (1-3).

If the problem of interest is two-dimensional, that is, if the
sources are infinite in extent in one rectangular direction and independent

of that direction, the Green's function must be changed to

oo 1 (@) o -
G(x, ') = 75 Hy (klr - ' (1-15)
Here Héz) is the zero order Hankel function of the second kind, equal to
J0 - jNO, where JO is the zero order Bessel function of the first kind and

N0 is the zero order Bessel function of the second kind (or Neumann func-
tion). The potential integrals (1-12) and (1-14) must now be surface
integrals in the cross sectional surface transverse to the direction of

invariance of the current.

1-5 CONDITIONS AT SURFACES

There may be discontinuities in the electromagnetic field at sheets
of current and at surface discontinuities of the constitutive parameters.
In Fig. 1-2, let S represent a surface between two regions, a and b, and
let n be the unit vector normal to S pointing into region a. There may
be an electric surface current J and/or a magnetic surface current M on S.
(In figures, we use a single headed arrow to denote electric current and
a double headed arrow to denote magnetic current.) The tangential com-

ponents of the field on S then obey the conditions

Jd=nx (i -H)
on S (1-16)

1=
]

I~
=

'—'—'————-—-—-—.—._.__.ﬂ

sl tte




region a

M

regionb

Fig. 1-2. A boundary surface S between regions a and b, possibly

supporting surface currents J and M.

where superscript a on a vector denotes that it is evaluated in or is
peculiar to region a, and similarly for the superscript b. The field
vectors in (1-16) are evaluated on the surface S, as implied by "on S"
in (1-16), with the superscript denoting on which side of S.

The normal components of the fields on S obey the conditions

q=n" (eaEa - ebEb)

on S (1-17)
m=n - (WK - 1H)

where ¢ and m are the surface densities of electric and magnetic charges on
a a b b

S, €,4 are €, |y in region a, and £, u are €, y in region b. The q

and m are related to J and M by the equation of continuity (1-3), except

that now V+ represents the surface divergence operator.

If there is no surface current on S, then the left-hand sides of

(1-16) are zero and

h

x
~~
=+
1
=
-4
n
=)




These equations state that the tangential components of E and H must

be continuous across S. There are no surface densities of induced cur-
rent at a boundary between two media (perfect conductors excepted).
Hence, the tangential components of E and H must be continuous across
the boundary between two media (perfect conductors excepted).

Similarly, if there is no surface charge on S, the left-hand
sides of (1-17) are zero and

ne*ecE =n-*€E
on S (1-19)
neuH =n-uwH
These equations state that the normal components of €F and uH must be
continuous across S. In the time-harmonic case, there are no surface
densities of induced charge at a boundary between two media (perfect
conductors excepted). Hence, the normal components of €E and uH must
be continuous across the boundary between two media (perfect conductors
excepted).

In the special case of a perfect electric conductor, no field
exists internal to the perfect conductor, and a surface current J exists
on the surface. If region b is a perfect conductor, boundary conditons
(1-16) become

J=nxH
on $ (1-20)
0=nxE
Hence, the tangential component of E is zero at the surface of a perfect

electric conductor, and the tangential component of H is equal to J ro-

tated 90°. Also, (1-17) becomes the boundary conditions
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L
]
=
m
2]

on S (1-21)

[
L]
=
.
=
jo o

Hence, the normal component of WH is zero at the surface of a perfect
electric conductor, and the normal component of €E is equal to the sur-

face charge density.

1-6 THE EQUIVALENCE PRINCIPLE

Many source distributions outside a given region can produce the
same field within the region. Two sources producing the same field in
a region are said to be equivalent within that region. When we are
interested in the field in a given region, we do not need to know the
actual sources. Equivalent sources serve as well.

A detailed discussion of the equivalence principle can be found
in [1]. Basically, it involves dividing space into two (or more) regions
and assuming Maxwellian fields in each region. There is generally a
discontinuity in the field at the surface S which forms the common boundary
between the two regions. On this boundary we assume surface currents J
and M which are related to the fields by (1-16). We then have a Maxwellian
field everywhere and the sources which support it. 1If there is a one-to-
one correspondence between a field and its sources, we have then found
equivalent sources for the field in a given region. This one-to-one
correspondence is always obtained in the case of lossy media. It is not
always obtained in the loss-free case, as noted in Section 3-3 of [1].

The equivalence principle is best illustrated by means of a fairly

general example. Consider Fig. 1-3 and let S represent a mathematical




e

11

E? H®

QG'PO

S

{(a) original o problem

EL.H

(b) original b problem

E?, H®

‘ﬂ'#o
S

(c) equivalent to a external to S
and to binternal to S

Fig. 1-3. Illustration of the Equivalence Principle.
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surface defined in space. 1In Fig. 1-3a, let g?, g? be impressed sources
producing a field g?, Eé everywhere in a medium characterized by con-
stitutive parameters i° and €*. In Fig. 1-3b, let QP, gP be impressed
sources producing a field g?, EP everywhere in a medium characterized by
constitutive paramete.. ub and Eb. We now construct the equivalent

problem of Fig. 3c as follows. External to S, we specify that the sources

a

a a
are J, M

, the field is E°, H

we specify that the field is Eb, g? and the medium is ub, eb. To support

, and the medium is ua, ea. Internal to S,

the discontinuity in fields on S, we must satisfy (1-16), or

J

]
=
X
=
1
j>+]

on S (1-22)

M -E) xan

U}
~
|tm

These are called the equivalent currents on S. Assuming that the relation-
ship between the field and its sources is one-to-one, we know that the
equivalent sources in Fig. 1-3c must produce the postulated field.

Some important special cases are: (1) the field in one region is
assumed to be the null field, (2) the medium in one region is assumed to
be a perfect electric conductor, and (3) the medium in one region is assumed
to be a perfect magnetic conductor. These cases are discussed in detail

in Section 3-5 of [1], and we use such cases in the next chapter.

1-7 INTEGRAL EQUATIONS

For some geometrically simple problems, solutions for the field
can be obtained by solving the differential equations. For more compli-
cated geometries, it becomes more convenient to use integral equations

or, more generally to use integro~differential equatjions to obtain

J————— 2

i




13

solutions. These solutions are usually approximate, and one method for
obtaining them is the method of moments, discussed in the next section.

A general procedure for establishing integral equations is to use
the potential integrals to find the fields in terms of the sources (actual
or equivalent) and then to relate the fields to the sources by boundary
conditions or constitutive relationships. The procedure is best illus-
trated by an example.

Let Fig. 1-4 represent a dielectric body V in free space, excited
by an impressed field g?, which can be thought of as the field which
exists due to external sources when the body is absent. Let the con-
stitutive parameters of free space be denoted by eo, My and those of the
dielectric body by €, My The total field within V induces a polariza-

tion current J related to the total field E by

J = jw (¢ - eo)g_ in V (1-23)

In other words, J is the excess displacement current over what would

E'+ E®

eo ’I-‘-o

Fig. 1-4. A dielectric body in free space excited

by an impressed field g}.
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exist there if V contained free space, E being unchanged. The total
field E is the sum of the impressed field g} plus the scattered (or

secondary) field E? produced by J, that is

E=E +E°Q) (1-24)

We can calculate g?(g) by the potential integrals, section 1-4, but
choose not to write down the explicit formulas. For now, it is suf-
ficient to note that ES is linearly related to J, that is,_gsgi) is a
linear operator. It involves an integral and some derivatives and
should properly be called an integro-differential operator. For bre-
vity, we shall call it simply an integral operator.

We now use the constitutive relationship (1-23) in (1-24) to

obtain
J

jule - €)

L+ E5(0) inv (1-25)

This can be rearranged into the form
L) = E (1-26)
in V, where

- B (1-27)

is a linear operation. In (1-26), the impressed (or incident) field gi
is known, L 1is a known integral operator, and J is the unknown to be

found.
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1-8 METHOD OF MOMENTS

The method of moments is a general procedure for solving operator
equations of the form (1-26). 1Its mathematical foundations lie in the
theory of projections in linear inner product spaces. A detailed but
elementary exposition of the procedure can be found in reference [8].
The following is a short outline of the method.

Suppose we have an operator equation of the form

L(f) = g (1-28)

where L is a linear operator, g is a known function, and f is an unknown
function to be determined. We must define an inner product <f, g> (or

symmetric product if f and g are complex) such that

(a) <f, g> = <g, >

(b) <of, + Bf,, g> = o<f;, g> + B<f,,g> (1-29)
(c) <f, £ >0 if £ 40

*
@) <f, £f>=0 if and only if £ = 0

Here o and B are scalars, and * denotes complex conjugate. In a complex
Hilbert space the usual inner product is <f, g*>, and the conjugate oper-
ation is not shown explicitly. 1In electromagnetic theory it is more con-
venient to use the symmetric product <f, g> and show the conjugation
explicitly when needed.

We next choose a set of linearly independent expansion functions
f

or basis functions {f ...} in the domain of L and represent f as the

1’ "2

linear combination

.

T P
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fx) of (1-30)

where the a are scalars to be determined. For computational purposes
the representation is usually approximate, as shown. Substituting

(1-30) into (1-28) and using the linearity of L, we obtain

) aLf =g (1-31)
n
We next define a set of linearly independent testing functions or weight-

ing functions {wl, W,,...} in the range of L and take the inner product

2’
(or symmetric product) of (1-31) with each w o The inner product is

linear, and the result is

= < -
g an <wm, Lfn> wm, g> (1-32)

m=1,2,3,... . This is a set of linear equations which can be written

in matrix form as

[2a = g (1-33)
where
(2] = [ <w, LE> <w, LE> . . . (1-34)
<w2, Lf1> <w2, Lf2> .
&= o] 2 = '<w1, g> (1-35)
a% <w,, 8>
! .J i : ]

If the number of expansion functions equals the number of testing functions,
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[2] will be a square matrix. The & and g are column matrices, also called
column vectors. If (2] is nonsingular, its inverse [PV]_1 exists, and the
3 is then given by

&= (1-36)

The solution for f is then given by (1-30) where a are the components of
o obtained from (1-36).

By defining a row matrix of the expansion functions as (where

the tilde is used to denote the transpose of a matrix 'n general)

f = [f1 f2 f3 A (1-37)

we can write the solution concisely in the form

=1~

Fa=fl0) g (1-38)

h
<4

Finally, instead of the function f itself, we are often interested in
some functional (number) p which depends linearly on f. This.can be

expressed in the general form
p = <h, f£> (1-39)

where h is a known function (determined as a part of formulating the

problem). Substituting (1-38) into (1-39), we have

T (1-40)

where h is the row vector

ho= [<f, h> <f, h> L] (1-41)

In general, we call h a measurement vector. (It is characteristic of
the particular measurement p we wish to perform.) Every linear measurement

(functional) can be expressed as a matrix contraction of the form (1-40).

e s R

—
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Chapter II

A GENERALIZED NETWORK FORMULATION FOR APERTURE PROBLEMS

2-1 INTRODUCTION

This chapter considers a general formulation for a two-reglon aper-
ture problem. First an operator equation is obtained in terms of an
unknown equivalent magnetic current, and this is then reduced to a matrix
equation via the method of moments. The only coupling is through the
aperture, whose characteristics are expressed by aperture admittance
matrices, one for each region. These admittance matrices depend only on
the region being considered, being independent of the other region. The
aperture coupling is then expressible as the sum of the two independent
aperture admittance matrices, with source terms related to the incident
magnetic field. This result can be interpreted in terms of generalized
networks as two N-port networks connected in parallel with current
sources. The resultant solution is equivalent to an N-term variational
solution.

Since the problem is divided into two mutually exclusive parts, one
can separately solve a few canonical problems, such as apertures in con-
ducting screens, in waveguides, and in cavities, and then combine them in
various permutations. Computer programs can be developed to calculate
the aperture admittance matrices for classes of canonical problems,
such as apertures of arbitrary shape in conducting planes, in square wave-
guides, and in rectanguiar cavities. Such programs can then serve as
broad and versatile tools for designing electromagnetic networks with aper-

ture coupling.

-




2~2 GENERAL FORMULATION

Figure 2-~1 represents the general problem of aperture coupling between
two regions, called region a and region b. 1In region a there are impressed
sources g?, ﬂi, and region b is assumed source free. The more general case
of sources in both region a and region b can be treated as the superposition
of two problems, one with sources in region a only, plus one with sources in
region b only. Each region of Fig. 2-1 is shown to be bounded by an elec-~
tric conductor, although other types of electromagnetic isolation may be
used. Region a is shown closed and region b is shown open to infinity,

although each region may be open or closed. The equivalence principle,

discussed in Sec. 1-6, is used to divide the problem into two equivalent

CONDUCTOR

|, «—APERTURE

REGION a
REGION b

Fig. 2~1. The general problem of two regions
coupled by an aperture.
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problems as shown in Fig. 2-2., 1In region a, the field is produced by
the sources il, !i, plus the equivalent magnetic current
M=n~xE (2-1)

over the aperture region, with the aperture covered by an electric con-
ductor. In region b, the field is produced by the equivalent magnetic
current -M over the aperture region, with the aperture covered by an
electric conductor. The fact that the equivalent current in region b is
the negative of that in region a ensures that the tangential component of
electric field is continuous across the aperture. The remaining boundary
condition to be applied is continuity of the tangential component of mag-
netic field across the aperture.

The tangential component of magnetic field in region a over the
aperture, denoted g:, is the sum of that due to the impressed sources,
denoted Ei, plus that due to the equivalent source M, denoted gi(g),
that is
Note that Ei and gi(g) are both computed with a conductor covering the

aperture. A similar equation holds for region b, except that the equi-

e

valent source -M is the only source, Hence, the tangential component

of magnetic field in region b over the aperture is !

b _ b vy o _ P B
Hy = H (M) = - B2 (2-3)

where g:(g) is computed with a conductor covering the aperture. The last
equality in (2-3) is a consequence of the linearity of the g: operator.

The true solution is obtained when 53 of (2-2) equals ﬁ: of (2-3), or

.




CONDUCTOR

REGION a

(a) EQUIVALENCE FOR REGION a.

CONDUCTOR

REGION b

(b) EQUIVALENCE FOR REGION b.

Fig. 2-2. The original problem divided into two

equivalent problems.
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-2 - P = B (2-4)
-t~ =t
This is the basic operator equation for determining the equivalent
magnetic current M.
If (2-4) were satisfied exactly, we would have the true solution.
We use the method of moments to obtain an approximate solution.
Define a set of expansion functions {ﬁna n=1,2,...,N}, and let
M=) VM (2-5)
- nn
n
where the coefficients Vn are to be determined. Substitute (2~5) into
(2-4) and use the linearity of the Et operators to obtain
a b _ .1 _
LV - LV - B (2-6)
n n
Next, define a symmetric product
<A,B> = H A+ Bds (2-7)

apert.

and a set of testing functions {Em' m=1,2,...,N}, which may or may not be
equal to the expansion functions. We take the symmetric product of (2-6)
with each testing function Em, and use the linearity of the symmetric

product to obtain the set of equations
~ TV, B> - TV o, B> = <H i (2-8)
oo m’ t oo m’ Tt m’ ot

m=1,2,...,N. Solution of this set of linear equations determines the
coefficients Vn and the magnetic current M according to (2-5). Once M
is known, the fields and field-related parameters may be computed by

standard methods.
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The above solution can be put into matrix notation as follows:

Define an aperture admittance matrix for region a as
a a
= L™ > -
[Y%) = [<-W LHO(M)>1y o (2-9)
and an aperture admittance matrix for region b as
("] = [<-w B0 (M )>) (2-10)
m’ t n’ 'NxN

The minus signs are placed in (2-9) and (2~10) on the basis of power con-

siderations. Define a source vector

+i

i
[<wm,ﬂt>]le (2-11)

and a coefficient vector

<y

= Valwa (2-12)

Now the matrix equation equivalent to equatioms (2-8) is

2+ P19 = (2-13)

This can be interpreted in terms of generalized networks as two networks

v, ®1
[ve] W[ 1] [v*]

REGION a . REGION b
+ 3
V| O

Fig. 2-3. The generalized network interpretation
of equation (13).
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[Ya] and [Yb] in parallel with the current source fi, as shown in Fig. 2-3.

The resultant voltage vector i

Vo= v? o+ P (2-14) ]
is then the vector of coefficients which gives M according to (2-5). ‘
It is important to note that computation of [Ya] involves only
region a, and computation of [Yb] involves only region b. Hence, we
have divided the problem into two parts, each of which may be formulated

independently. Once [Ya] is computed for one region, it may be combined

with [Ya] for any other region, making it useful for a wide range of
problems. For example, the same aperture admittance matrix for radi-
ation into half-space would be useful for plane wave excitation of the

aperture, waveguide excitation, and cavity excitation.

2-3 LINEAR MEASUREMENT

A linear measurement is defined as a number which depends linearly
on the source. Examples of linear measurements are components of the field
at a point, voltage along a given contour, and current crossing a given
surface. Measurements made in region b will depend linearly only on the
equivalent current -M. Measurements made in region a will depend linearly
on the impressed sources g}, ﬁi, as well as on the equivalent current M.
We now illustrate these concepts with a particular example.

Consider the measurement (computation) of a component Hm of mag-
netic field at a point r in region b. It is known that this component
can be obtained by placing a magnetic dipole Kgm at o and applying the
reciprocity theorem to its field and to the original field, Section 3-8
of [1]. ‘The original field in region b is given by the solution to
Fig. 2-2b. The problem involving the magnetic dipole, called the adjoint

problem, is shown in Fig. 2-4. Application of the reciprocity theorem

e —




26

CONDUCTOR Kem

REGION b

Fig. 2-4. The adjoint problem for
determining Hm at x.-

to these two cases yilelds

H KL = - J[ M - H'ds (2-15)
m m - =
apert.
Here g? is the magnetic field from K&m in the presence of a complete
conductor, and Hm is the component in the direction of K&m of the mag-
netic field at ro due to -M in the presence of a complete conductor.

To evaluate (2-15), substitute for M from (2-5) and obtain

m
n <-Mn, H> (2-16)

HKe =)V
m m
n
This can be written in matrix form as

HKe =10V (2-17)
m m

~m
where 1 is the transpose of a measurement vector

P
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m m

I = [<—Mn, H >] (2~-18)

Nx1

Note that the elements of ™ are similar in form to those of fi given

by (2-11), except that —gn replaces Em. The minus sign difference
reflects the fact that the equivalent source in region b is -M, in con~
trast to that in region a which is +M. Now substitute (2-14) into (2~-17)
to obtain

nKL = P[y® + ¥y (2-19)
m m

If the magnetic dipole is of unit moment, then (2~19) gives Hm at Em
directly.

Every linear measurement in region b will be of the form (2-19).
For example, if a component of E at r, were desired, we would place an
electric dipole at r and apply reciprocity. 1In general, a linear measure-
ment involves applying reciprocity to the original problem and to an ad-
joint problem. A determination of the sources of the adjoint problem is a
part of the formulation of the problem.

If a linear measurement i1s made in region a, it will involve a con-
tribution from the impressedsourcesg}, ﬂi added to that from the equivalent

source M. For example, instead of (2-19) we would have
wke = ke + v® + v (2-20)
m m m m

where H; is the magnetic field from g}, !1 in the presence of a complete

conductor. Also, in region a we would define the measurement vector to be

2m m
I = [<Mn’ H >]le (2-21)

instead of (2-18), because the equivalent sources are +M in region a in

Mt Aatonitia,

cmaathts s et .




contrast to -M in region b. Note that it is the difference field ﬂfﬂi
in region a (due to M) that is directly analogous to the transmitted

field H in region b (due to -M).

2-4 TRANSMITTED POWER

A quadratic measurement is one which depends quadratically on the
sources. Examples of quadratic measurements are components of the
Poynting vector at a point, power crossing a given surface, and energy
within a given region. A particular quadratic measurement of considerable
interest is the power transmitted through the aperture, which we now
consider.

The complex power Pt transmitted through the aperture is basically

P = ” EXH +nds (2-22)

apert.
where the asterisk denotes complex conjugate. Substituting from (2-1),

we have

P, = ” M- Hds (2-23)

apert.
This involves only the tangential component of H, which in region b we
denoted by Ht(fﬂ). For M we use the linear combination (2-5) and ob-
tain

b ~ b
HO(-M) = - ‘2\ Vv H (M) (2-24)

Substituting this for H and (2-5) for M into (2-23), we obtain

m

p==-]1V v M- BOY(M )ds (2-25)
t mon n -m -t ™
apert.

If gm are real, the conjugate operations can be taken outside the




integrals. Moreover, ifM = W (Galerkin's method), then the negative

*
of the integrals in (2-25) are an 25 defined by (2-10), and

* _b*
= -2
P, PV oY (2-26)
mn

This can be written in matrix form as

N *-yk ,
P, = VIYLV (2-27)

Note that this is the usual formula for power into network [Yb] of

Fig. 2-3.

2-5 DISCUSSION

The basic formulation for two-region aperture problems is given

aperture is considered explicitly, but

in this chapter. Only a single

the extension to multiple apertures is straightforward. In Chapter 111,

we apply the formulation to the problem of apertures in plane conducting

screens. In Chapter iV, we apply it to waveguide-fed apertures. In

Chapter V, the formulation is specialized to cavity-backed apertures.

Chapter VI considers the case of a narrow slot in a thick conducting

plane. Chapter VII considers the case of an aperture in a plane screen

packed by a conducting body. Chapter VIIL considers the equivalent

circuit for coupling through an aperture to a long wire. There are.

of course, infinitely many geometries that can be considered, and this
report treats only a representa

The basic principles remain the same regardless of the type of problem

being considered.

PRIV AUI—— —

tive cross section of these pessibilities.
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Chapter III

APERTURES IN PLANE CONDUCTORS

indsninlid

3-1 GENERAL THEORY

Consider a conducting plane covering the z=0 plane except for an

aperture, as shown in Fig. 3-1. The two regions z >0 and z < 0 are
identical-half spaces, and hence their aperture admittance matrices
are the same. Therefore, we let

v + Y°) = 2(v"S) (3-1)

hs .
where [Y ] denotes the aperture admittance for the aperture opening

into half space, say z > 0. When the aperture is covered by a conductor,

X

PLANE

CONDUCTOR Um TO
INCIDENT MEASUREMENT

POINT
WAVE u; 0
r Km
ki \\\
v >n Z
APERTURE
Y

Fig. 3~1. Aperture in a plane conductor.
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the z=0 plane is a compiete conducting plane, and image theory applies.

The magnetic current expansion functions are on the surface of the z=0

plane. Their images are equal to them and are also on the z=0 plane,

, . \ hs, . .
according to section 3-6 of [1]. The result is that [Y ] is the admit-
tance matrix obtained using expansion functions zgn radiating into free

space everywhere. This problem is dual to that for the impedance matrix

of a plane conductor, a problem considered recently in the literature [2].

The original excitation of the aperture is by the impressed
sources ii, ﬁ? in the region z<0. The impressed field ﬂi used in the
operator equation (2-4) is the tangential magnetic field due to gi, 51
with the aperture covered by a conductor (Fig. 2;23). In this case the
z2=0 plane is a complete conductor, and image theory again applies. The
result is that the tangential component of H over the z=0 plane when it
is covered by a conductor is just twice what it is for the same sources

in free space. Hence,

H = 2H (3-2)

where ﬂzo is the tangential component of the magnetic field over the
aperture due to the sources g}, ﬂi in free space. The components of

the excitation vector fi defined by (2-11) are now
i _ io
1° =2 JJ Em ﬂt ds (3-3)

where Em is the mth testing function.
A case of special interest is that of plane wave excitation.

A unit plane wave is given by

=y, e (3-4)

Lo

P VPRI




33

R . . io ,
where u, is a unit vector specifying the direction of ﬂl s Ei is the

1
propagation vector of magnitude 27/} and pointing in the direction of
propagation, and r is the radius vector to an arbitraryv field point.

These vectors are shown in Fig. 3-1. The components (3-3) of the

plane-wave excitation vector are then

-k, * x
Pi =2 ff W *u, e 1 ds (3-5)
~m

apert.

> . . . . .
The symbol P~ has been used for this particular vector to distinguish
it from the more general excitation vector (3-3).

Similar simplifications apply to the adjoint (measurement)
problem. For the evaluation of a compounent of magnetic field at a
point r , a magnetic dipole K{ 1is placed at the measurement point r

-m - -m
This radiates in the presence of a complete conductor over the z=0
plane, and hence, analogous to (3-2), we have

m

mo
H = o (3-6)

m ,
Here ﬂt denotes the tangential component of H over the aperture from
. o
Kﬁm when the z=0 plane is covered by a conductor, and H: denotes that
from Kgm when it radiates into free space. The components of the

measurement vector fm defined by (2-18) are now

™ =-2 ” M+ H™%ds (3-7)
-n -t

apert.
where Mn is the nth expansion function.
A case of special interest is that of far-field measurement.
This is obtained by a procedure dual to that used for radiation and

scattering from conducting wires [3]. To obtain a component of H

S




on the radiation sphere, we take a source K&m perpendicular to Em

and let L + ©, At the same time we adjust Klm so that it produces
a unit plane wave in the vicinity of the origin. The required

dipvle moment is given by
= =— @ m (3-8)
m

and the plane wave field it produces in the vicinity of the origin is

_J_lsﬂloz

HC =u e (3-9)

- -m
Here u is a unit vector in the direction of g?o, Em is the propaga-
tion vector, and r is the radius vector to an arbitrary field point.
Again these vectors are shown in Fig. 3-1. The components (3-7) of the

far-field measurement vector are then

. gk, cx

P =-2 JJ T u_ e ds (3-10)
apert.

The symbol " is used for this particular measurement vector to

distinguish it from the more general measurement vector (3-7). The

far-zone magnetic field is now given by {(2-19) with KZm given by (3-8),

2m >m 21 >

I =P, I =P, and [Ya + Yb] given by (3-1). Hence

_ —jkr_ B ,
_ - é;ﬁge m Pm[YhS] 1 ;1 (3-11)
m

The usual two radiation components H8 and H¢ are obtained by orienting

Kﬁm in the 7 and ¢ directions, respectively.
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3-2 TRANSMISSION PARAMETERS

A parameter sometimes used to express the transmission character-
istics of an aperture 1s the transmission cross section 1. It is de-
fined as that area for which the incident wave contains sufficient power
to produce the radiation field Hm by omnidirectional radiation over half

space. For unit incident magnetic field, this is

202
T = anm|Hm| (3-12)

Substituting from (3-11), we obtain

2.2
_we ysm hs. -1 21,2 _
T = 355 [P" (Y 1 " P (3-13)

Note that T depends upon the polarization and direction of the incident
wave (via 31), and upon the polarization measured and direction to the

measurement point (via ﬁm).

Another parameter used to express the transmission characteristics

of an aperture is the transmission coefficient T, defined as

P
T = -LIans. (3-14)
P
inc.
where P is the time-average power transmitted by the aperture,

trans.
and Pinc is the free space power incident on the aperture. The inci-

dent power is
=nS cos einc (3-15)

Pinc.

wvhere n = /u7€ is the intrinsic impedance of free space, S is the

aperture area, and einc is the angle between 51 and n. The trans-

mitted power is

PO RTIVALY SR A




trans ~ Re(Py) (3-16)

where Re(Pt) denotes the real part of Pt’ given by (2-27) so that

1

- yhs ¥ P 3-17
h NS cos 6, Re (V( ] ) (3-17)
inc.

T

Note that T depends on both the direction of incidenc: and on the
polarization of the incident wave.

Finally, because of symmetry about the z =0 plane, the difference
field ﬁfﬁi which exists in the region z<0 is simply related to the
transmitted field which exists in the region z>0. The difference field
in the region z< 0 is produced by an equivalent current M on a plane
conductor over the z = 0 plane. By image theory, it is also the field
produced in the region z<0 by the source 2M in free space. Analogously,
the transmitted field in the region z>0 is produced by the source -2M
in free space. Hence, the difference field in the region z< 0 and the
negative of the transmitted field in the region z>0 are both pro-

duced by the same magnetic current 2M radiating in free space.

3-3 ADMITTANCE MATRIX

If an admittance matrix [Y] is defined by [Y] = [Ya + Yb], then,

according to (3-1) and (2-10), the ij~thelement of [Y] is given by

a b
Y, = (Y +vY = - 4< > -
13 ( )ij 4 Wes H(Ej) (3-18)
where ﬂ(yj) is the magnetic field produced by yj radiating in free
space. In view of Sections 1-3 and 1-4, the magnetic field H(M,)

3

can be expressed in terms of an electric vector potential Ej and mag-

netic scalar potential wj as [4]
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) o= - JwF, - VY, 3-1
LY JuF, = Vo, (3-19)

where

¢ Jikler'l
L ” L =l (3-20)

apert.
-jk|r-r'|
R € - ' -2
e ” L ds (3-21)
apert.
LY
== 3-22
m; o ( )

where r and r' are respectively the vectors to the field and source
points in the aperture. Substituting (2-7) and (3-19) into (3-18), we

obtain

L= < (juF, + ¥ . -2
Yij 4 I( Ei (Jugﬁ yjj)ds (3-23)

apert.
1f the component of Ei normal to the rim of the aperture vanishes

on the rim of the aperture, then

J[ Ve (p, W,) ds = 0
s st
apert.
The above equation can be rewritten as
)J Ei . y¢j ds + JJ ¢j v . Ei ds = 0 (3-24)
apert. apert.
Hence, (3-23) becomes
= . ! -2
Yi 4ijw [J (Ej Ei + w,mi) ds (3-25)
where apert
Vew
m o= 1t (3-26)
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| We must now consider a specific problem in order to choose appropriate

expansion and testing functions.

3-4 THE RECTANGULAR APERTURE

The geometry and coordinate system for the rectangular aperture
in a conducting plane is shown in Fig. 3-2. For this problem, we
choose the set of testing functions Ei equal to the set of expansion

h functions gj. The rectangular aperture 0 < x §~LxAx, 0<y« LyAy

X
APERTURE
TO
INCIDENT MEASUREMENT
WAVE POINT
4
CONDUCTING
PLANE

Fig. 3-2. Rectangular aperture in a conducting
plane.
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where Lx and Ly are integers is divided into rectangular subareas
of length Ax in x and Ay in y. The set ﬁj of expansion functions
is split into a set gg of x directed magnetic currents and a set
g; of y directed magnetic currents defined by
& x y =1,2,.. Lx-l
_ 1y =X T (x) P (y), (3-27)
“pH(a-1) (L -1) P q q=1,2,...L
y
p=1,2, L
y a oy X X
M _ =¥y T (y) P (x), (3-28)
masl 1)Lx 1 P q = 1,2,...Ly-1
where X and 2 are unit vectors. Tﬁ(x) and TZ(y) are triangle
functions defined by
x - (p-1)4x -
A (p-1) Ax < x < pix
T (x) = DX = X pay < x < (pHDAx (3-29)
0 lx -~ pix| > Mx
= (A;l)A (q-1)4y <y < qby
Dy = WD -3 ghy <y < gty (3-30)
q by
0 ly - ady| > ay

and P:(x) and PZ(y) are pulse functions defined by

1 (p~1)Ax < x < pAx
P:(x) = (3-31)
0 all other x

1 (g-1)Ay < y < qly
Pz(y) = (3-32)
0 all other y
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The magnetic charge sheets, say m? and m? associated with M and g?

=] 3
are obtained from (3-22) as
X x y
P - P P
x ) (p(X) p+1(")) q(y) 3-33)
P+(q-1) (L -1) -jwix
y y X
P - P P ({x
I _ YO = B ()IFT) 300
PH(e-DL -jwly
Introduction of the two types of expansion functions H; and yg and the
two types of testing functions g; and Mi into (3-25) gives rise to

four Y submatrices defined by

I
»
<

u =
UV= V. u v u -
Yij 4iw JJ (Ej !i + wjmi)ds vy (3-35)

apert. ’

The mathematical details and approximations for numerically evaluating

(3-35) can be found in a research report [5].

3-5 PLANE WAVE EXCITATION AND MEASUREMENT VECTORS

-
The plane wave excitation vector Pi of (3~5) and the plane wave
measurement vector 3m of (3-10) are of the same form except for a minus
sign. We therefore need to evaluate only one of them, say the measure-

ment vector gm_ We specialize it to four principal plane patterns as

mu - _ u a5 Jkx cos 0 _
Py )ey 2 JJ M +Be dxdy (3-36)
apert.
mu - u _ ~ jkx cos 9 _
(Pi )yy 2 JJ M - Fe dxdy (3-37)

apert.
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(1>"i‘“)¢x =-2 JJ g: . § IKY 08 ¢ 4ay (3-38)
apert.
™ =-2 ME . g KGO8 @ g (3-39)
1 7xx —i = y
apert.

where u is either x or y. The superscript u is necessary because Mi has
been split up into M; and Mj of (3-27) and (3-28). In (3-36) to (i-39),
Q, i, @, and g_are unit vectors in the 8, y, ¢, and x directions respec-
tively where, as shown in Fig. 3-2, 6 is measured from the positive x axis
in the y=0 plane and ¢ is measured from the positive y axis in the x=0

is

plane. For measurement vectors, 0° < 6 < 180°, 0° < ¢ < 180°, (PTU)
- - —_ 7 - i Oy

for a ﬁ polarized measurement in the y =0 plane, (Pnim)yy is for a 2
polarized measurement in the y=0 plane, (P?u)¢x is for a @ polarized
measurement in the x=0 plane, and (P?u)xx is for an g_polarized measure-
ment in the x=0 plane. Because our set of testing functions Ei is the
same as the set of expansion functions yﬁ’ the plane wave excitation
vector 31 of (3-5) is obtained by putting 180° < 6 <360°, 180° < ¢ < 360°
in the negative of one of the equations (3-36) to (3-39).

Again the mathematical evaluation of (3-36) to (3-39) can Pe found
in the report [5]. A computer program, complete with operating instruc-
tions, for computing the transmission through a rectangular slot in a

conducting plane is given in Part Two of [5].

3-6 REPRESENTATIVE COMPUTATIONS

A number of representative computations using the above matrix solu-

tion is given in the report [5]. We summarize some of these results here.
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The first computations were made for a narrow slot, of width A/20
in the y direction of variable length L in the x direction. The far-zone
quantity plotted was the transmission cross section, given by (3-12),

where Hm is the component of magnetic field being considered. We use

the notation:

—~
[}

2 2 :
oy 2nrmlH8| in the y = 0 plane

(3-40)

= 2nr2]H ]2 in the x = 0 plane.
m'x

~)
|

XX

We choose Ay = A/20 so that q = 1 in (3-27) and (3-28). 1In this case,
there are no y directed magnetic current expansion functions (3-28). Thus,
the matrix solution (2-5) for the magnetic current M is an x directed
vector. As a result, Hy = 0 in the y = 0 plane and H¢ =0 in the x = 0
plane. In other words, for the case being considered, the components of
H orthogonal to those in (3-40) are zero.

Figure 3-3 shows plots of Tey and Txx for x-directed slots of width
/20 and length (a) L = A/4, (b) L = A/2, (c) L = 3X/4, and (d) L = A. 1In
all cases the excitation was due to a plane wave normally incident on the
conducting plane with the magnetic field in the x direction. Note the
large transmission cross section for L = A/2, case (b), due to the slot
being near resonance. The plots of T are of the same form as scattering
cross section from the complementary conducting strips, as known from
Babinet's principle.

Figure 3-4 shows plots of the equivalent magnetic current in the
aperture region for the same slots. Since M = Z x E, they are also plots
of the tangential component of E in the slots. Again note the large

value of M for the case L. = )/2, which is near resonance. Note also that,
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Fig. 3-3. Transmission cross section for slots of length L in the x
direction and width A/20 in the y direction. (a) L = \/4,
(b) L = X/2, (¢) L = 3X/4, (d) L = A. Excitation is by a
plane wave normally incident on the conducting plane with

magnetic field in the x direction.
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for the same slots as for Fig, 3-3, (a) L = A4, (b) L =
Circles denote magnitude, tri-

(¢) L=3/4, (d) L = ).

angles denote phase.
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for short slots (L < 3A/4), the M is almost equiphasal and closely approxi-
mated by a half sine wave.

Next, computations were made to test the rate of convergence of
the solution as the number of subsections was increased. A slot of
width A/10 and length 2X was chosen for the study. Again the excitation
is a plane wave normally incident on the conducting plane with the
magnetic field in the x direction. Figure 3-5 shows plots of TOy and j
Txx for the cases (a) 39, (b) 19, (=) 9, and (d) 4 triangular expan- }
sion functions respectively. Note that the patterns (a) and (b) are
essentially the same, and pattern (c) is only slightly different.
They differ appreciably from (d), which results from only 4 expansion
functions. The difference in the solutions as the number of expansion
functions is decreased is better illustrated by plots of M, as shown
in Fig. 3-6. These are for the same cases as for Fig. 3-5. It can be 1
seen clearly how the computed equivalent current in the slot regicn

changes as the number of subsections is reduced. As a rule of thunb,

for near-field quantities (such as M) one should use subareas of

length A/10 or less and for far-field quantities (such as 1) length /5

or less.

3-7 DISCUSSION g

The computer program, given in Part Two of [5], is written ex- .
plicitly for rectangular apertures, but the formulas are valid for anv b
aperture composed of rectangular subsections. Other apertures, such as

L-shaped, T-shaped, square O-shaped, etc., could be treated by appro-

; priately changing the computer program. Apertures of arbitrary shape
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Fig.

3-5.

(a) (b)
4 Txx /N
] /A L
0 1.0
(c) (d)

Transmission cross section when the number of expansion func~-
tions is (a) 39, (b) 19, (c) 9, and (d) 4. Computations are
for a slot of length 2)X in the x direction and width A/10 in
the y direction. Fxcitation is by a plane wave normally
incident on the conducting plane with magnetic field in the

x direction.
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Fig. 3-6. Magnitude and phase of lM/Ei|, where M is the x-directed

magnetic current and El 1s the incident electric field,
when the number of expansion functions is (a) 39, (b) 19.
(c) 9, and (d) 4. Circles denote magnitude, triangles
denote phase. Computations are for the same slot as

for Fig. 3-5.
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could be treated by approximating them by rectangular subsections. As
with all moment solutions, the size of the apertures which can be treated
depends upon the size of the matrix which can be computed and inverted.
The examples indicate that the rectangular subsections should have side
lengths not greater than 0.2 wavelengths for reasonable accuracy.

The aperture admittance matrix for radiation into half-space has
application to any problem in which one region is bounded by a plane
conductor, as shown in Chapter II. Hence, it can be used for a waveguide-
fed aperture in a ground plane ard for a cavity-backed aperture in a

ground plane. These problems are considered in the next two chapters.
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Chapter 1V

WAVEGULDE-FED APERTURES

4-1 GENERAL THEORY

Consider now a uniform waveguide feeding an aperture in a con-
ducting plane, as shown in Fig. 4-1. 1In general, the aperture may be
of different size and shape than the waveguide cross section., The half-
space region z >0 is the same as in the previous problem, Fig. 3-1, and
the analysis of the preceding chapter applies. An analysis of the

waveguide region is given below.

..~ PLANE CONDUCTOR
TO
Uum  MEASUREMENT
POINT
WAVEGUIDE
\ -
INCIDEI_\I_I__Q REGION a
MODE ~ Z
APERTURE
REGION b

Fig. 4-1. Waveguide-fed aperture in a conducting plane.
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Let the excitation of the waveguide be a source which produces
a single mode, of unit amplitude, incident on the aperture. This mode
(usually the dominant mode) is denoted by the index o. The field trans-
verse to the z-direction can then be expressed in modal form as

(Sect. 8-1 of [1]).

E
Z¢

(4-1)

]
4
1]

H u
—t o =z

It is assumed that all modes, TE and ™, are included in the summation.

The Yi are modal propagation constants

7oin o T - 0752 <
JSi jk v1 (X/Xi) A Xi
v, = (4-2)
G = S OWANK
i ki v1 (Ai A) A > xi

where Xi is the ith mode cut-off wavelength, and ki = ZN/Xi is the ith

mode cut-off wavenumber. The Yi are the modal characteristic admittances
Yi/jwu . TE modes
Y, = (4-3)

jws/yi s TM modes

is the reflection coefficient for the oth mode, and Fi is the. complex
amplitude of the -z traveling component of the ith mode. The e, are

normalized modal vectors, so that the modal orthogonality relationships

are

I e, * eds = (4-4)

where the integration ls over the waveguide cross section.




To evaluate the aperture admittance (2-9) for the waveguide region,

we consider a single expansion function Mn on the z=0 plane in the wave-
guide region. The tangential field produced by En will be of the form

(4-1), except that there is no incident wave. Hence, this field is

Y.z
a i
Et(!n) ) ; Ani € €i
(4-5)
Y,z
a , i
B M) = - g Aai¥i € Y X g
where the Ani are modal amplitudes. At z=0 we have
a
M = qu X E =}‘A'u X e, (4"6)
- Tz Tt { niz 1

Multiply each side of this equation scalarly by.gz X Sj and integrate

over the waveguide cross section, obtaining

B =3

JJ M L—lz x e.,ds = g Ani JJ (E‘LZ X Ei_) . (Ez X f’—j)ds (4-7)
guide guide

By orthogonality (4-4), all terms of the summation are zero except the

i=3 term. Hence,

apert.
We have replaced the integral over the waveguide cross section by one
over the aperture, since Mﬂ exists only in the aperture region. The ele-

ments of the aperture admittance matrix (2-9) are now given by

vg _ _ .y -
e ] e 9

apert.

M
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where the superscript wg denotes waveguide. The E: of (4-9) is given
by the second equation of (4~5) evaluated at z=0, g0 that

g _ . -
Ymn % AniYi JJ Em l—lz X Eids (4-10)

apert.

Now define the constants

B , = J{ W < u X elds (4-11)
- =i

mi ~z
apert.

which are similar in form to the Ani of (4~8). The elements (4-10)

then are given by

YW < 7 A

(4-12)
mn

B .Y,
ni mi i
Hence, all elements of the waveguide aperture admittance matrix [ng] are
linear combinations of the modal characteristic admittance Y,. For

i

Galerkin’s method, W =M and A , and B , are equal.
-n -ni -

T i

We next evaluate the equivalent magnetic current M, given by (2-5).
The incident field is given Ly the first term on the right~hand side of
(4-1). When the aperture is covered by a conductor, the waveguide is
terminated by a conducting plane. According to image theory, the tan-

gential magnetic field at z=0 is then just twice the incident wave or

HO=2Yu xe
-t o~z -0

(4~13)

This 1s the Ei used in (2-11) to evaluate the excitation vector Ti.

Hence, the components of the excitation vector are

1t = 2y [J W -u Xeds=2YB (4-14)
m o) ~m -2z -0 0O mo
apert.
- A . A | -




The total aperture admittance matrix is

v® + v°] = [Y¥B + vS) (4=15)

where [ng] is the waveguide aperture admittance and [YhS] is the half-
>
space aperture admittance. The coefficient matrix V is given by (2-14)

with the admittance matrix given by (4-15), or
Vo= [yV8 4yl (4-16)

Finally, the equivalent magnetic current M is given by (2-5) where the
coefficients Vn are the components of V.

Once M is found, the modal amplitudes Ti in (4-1) can be evaluated
from (2-1) and the orthogonality properties of the modes. From (2-1)

and (4-1), we have

= < *I‘ -
H=u *E % 9—0*’% iz & (4=17)
z=0

Now multiply each side scalarly by u, X e, and integrate over the wave-

3

guide cross section. By the orthogonality relationships (4-4), all

terms of the summation vanish except the term i=j. The result is

f o]
JJ Me+*u xe,ds = (4~18)
- =~z —i
guide r i#0
Here the integration over the guide can be changed to that over the
aperture because M= 0 except in the aperture. Substituting for M

from (2-5) into (4-18), and using the definitions (4-8), we have

YVA =147
‘o n no o )
n I

R (JO“-]Q) A
J VA, =T 140
n
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Finally, by defining modal measurement vectors as

->

Ay = gsTna (4-20)
and using (4-16), we can write (4-19) as
1+ =K Y+ yheytt ¢t (4-21)
and, for i # 0,
Po= A Y+ yheyl 3 (4-22)

The parameter of most interest is Fo, the reflection coefficient of
the incident mode. This is often expressed in terms of an admittance

1-T
o

Y?p = ETT; YO (4-23)

which is the equivalent aperture admittance seen by the incident
mode.

The region z > 0 for the wavegulde-fed aperture is the same half-
space region as existed in the previous problem of an aperture in a
conducting plane. Hence, evaluation of the fields in terms of M in this
region is done in the same way as in Chapter I1I. For example, the Y

component of the far~zone magnetic field at a point h S is given by

-jkr
- —Jwe m sm.o Wg hs. -1 21 _
n = G e PIIY®+Y 7] 1 (4-24)

~1Fi replaced by (4~16). The excita-

which is (3-11) with the term [ZYhS]
tion vector Ti has elements given by (4-14), and the far-field measure-
ment vector ﬁm has elements given by (3-10). The power gain pattern G {is

the ratio of the radiation intensity in a given direction to the radi-

ation intensity which would exist if the total power Re(Pt) were radiated
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uniformly over half space, or

ZﬂrinIHm{z
= TRe®) (42

Substituting for Hm from (4-24), we have

2.2
- WEMNM ~m.o Wg hs,-1 21,2 _
G ——————SnRe(Pt) [Py ®+Y "] 1] (4-26)

where Pt is given by (2-27). Note that this gain is a function of

the H component measured, as well as direction to the field point.

4-2 APPLICATION TO A RECTANGULAR WAVEGUIDE

We now apply the general theory to a rectangular waveguide feeding
a rectangular aperture in a conducting screen. Figure 4-2 shows the
problem to be considered and defines the coordinates and parameters to
be used. The perfectly conducting plate covers the entire z=0 plane
except for the aperture which is rectangular in shape with side lengths
LxAx and LyAy in the x and y directions respectively. Lx and Ly are
positive integers and Lx > 2. The aperture is fed by a rectangular
waveguide. The excitation of the waveguide is a source which produces
one mode, of unit amplitude, which travels toward the aperture.

The general method of solution discussed in Chapter 11 is to cover
the aperture with a perfect‘electric conductor, to place magnetic cur-
rent sheets +M and -M respectively on the left-hand and right-hand sides
of this conductor, to obtain an integral equation for M by equating the
tangential magnetic fields on both sides of this conductor, and to solve

this integral equation using the method of moments. The testing funec-~

¢
tions are the same as the expansion functions for M and are denoted by Mi'
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X
RECTANGULAR
WAVEGUIDE
Vi
CONDUCTING
PLANE
""-'J‘(x‘.Y‘)
) pa

Fig. 4-2. A rectangular wavegulde radiating through a rectangular

aperture into half-space bounded by an electric conductor.
Each Hi is a triangle in the direction of current flow and a pulse in
the direction perpendicular to current flow.

Expression (4-8) for A requires a knowledge of the expansion

ij
functions My and waveguide modes ey- The set Ei of expansion functions
is split into a set ﬂ: of x directed magnetic currents and a set !I of

y directed magnetic currents defined by

[ S
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" . y 4p=1,2,...LX~l
_ 4y = %_T (x-x,) P’ (y-y,) (4-27)
“p+(q-1) (L _-1) Pl g7 7L 971,2,. .01,
y o Y x p=l,2,...L,
Yore-nr, = ¥ Ty Fplexy) o
X

Lq=1,2,...Ly—l

where T:(x) and TZ(y) are triangle functions defined by (3-29) and
(3-30), and Pz(x) and Pg(y) are the pulse functions defined by
(3-31) and (3-32). An evaluation of the matrix [ng] is given in
detail in [2]. An evaluation of the matrix [Yhs] is the same as
that for the rectangular aperture, given in Sect. 3-4 of the pre-

ceding chapter. The listing and documentation of a computer program

for the problem of Fig. 4-2 is given in Part II of the report [2].

4-3 SAMPLE COMPUTATIONS

In this section we give some representative computations for
the aperture of Fig. 4-2. Figure 4-3 shows computed results for a
rectangular waveguide of dimensions A by A/2 radiating into half
space through a narrow centered rectangular slot of dimensions } by
A/10, that is, a = A and b = A/2. Figure 4-3(a) shows the x-component
of equivalent magnetic current, which is also equal to the y-component
of tangential E field in the slot. No y-component of magnetic current

was obtained because only one pulse in y was used. M is normalized

with respect to

\/Cfg JJ Igol2 dx dy (4-33)

guide
where the integral is over the waveguide cross section. 1In other words,

the normalization factor is the root-mean-square value of the E field
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of the incident wave. The phase of M is with respect to that of this E

field at the aperture. All computations are for dominant TRIO mode

excitation. Figure 4-3(b) shows the radiation gain patterns in the
two planes x = 0 and y = 0. The notation GOy denotes the gain pat-

tern due to H, in the y = 0 plane. The notation Gxx denotes the

0
gain pattern due to Hx in the x = 0 plane. The horizontal axis in
Fig. 4-3(b) is the z axis.

Figure 4-4 shows a plot of the equivalent aperture admittance

Yap seen by the dominant mode of an open-ended square waveguide of

width a radiating into half space. Tt is defined by (4-23), where

0031 COMPUTED
— MEASURED}COHEN. CROWLEY, LEVIS
O COMPUTER PROGRAM .

002}
[7,]
o .00}
p o
3

-t .

-.001

1
0.4 0.5 0.6 0.7 0.8 0.9 1,0
a/\

Fig. 4-4. The equivalent aperture admittance seen by the dominant mode
for an open-ended square wavegulde of width a radiating into
half space. Our computed results are compared to those cal-
c1lated and measured by Cohen, Crowley, and Levis [3].
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4-4,

FO is the reflection coefficient and Yo is the characteristic wave
impedance, both for the dominant mode. Our computations are com~

b pared to some previously obtained by Cohen, Crowley, and Levis [3].

Also shown are measured values reported in [3]. Additional numerical

computations are given in the report [2].
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Chapter V

CAVITY-BACKED APERTURES

5-1 THEORY FOR A CYLINDRICAL CAVITY

An important special case of the cavity-backed aperture is that
where the cavity is a finite cylinder of arbitrary cross section. The
aperture exists at one end of the cylinder, and the other end is com-
pletely covered by a conductor. The cavity can then be viewed as a
short-circuited waveguide and waveguide theory applied. Figure 5-1
represents a typical problem, where the excitation is by an incident

plane wave from the half-space region.

+—~— plane conductor
incident Ui
wave
ki - ——
aperture
by Z
cylindrical cavity
region a

Fig. 5-1. A cavity-backed aperture where the cavity is
formed by a shorted waveguide.

RN




The half-space part of the problem is identical to that treated
in Chapter TII. Forra unit incident plane wave of polarization uy
and propagation vector ki’ the excitation vector remains that of (3-5).
For a given set of expansion and testing functions, the aperture
admittance matrix of region a remains the same as that for Section 3-1,

denoted by [YhS]. The new aspects of the problem are those of deter-

mining the aperture admittance matrix for the cavity region, which

i T A et

cav 2>m .
we denote by [Y ], and the measurement vectors I for various de-~

sired field quantities.

The field in the cavity region can be expanded in terms of short-
circuited waveguide modes. For a cavity depth d, the transverse to z

compounents of an arbitrary field can be written as

sin ki(d—z)
E. =~ Z Aj & Tein k.d (5-1)
1 1
cos ki(d-z)
B3 DAY, X ) —oyg (5-2)

Here e, are the normalized modal electric field vectors (discussed in

Chepter 1V, Y, are the modal characteristic admittances, and ki are the

i
modal wave numbers. The term sin kid is placed in the denominator for
later convenience. The summations in (5-1) and (5-2) are assumed to be

over all modes, both TE and ™M if necessary. In particular, the modal

wave numbers are

V1 = T )2 Y-
kvl (X/\ic) ’ ic
. ki - ‘(5-3)
ik, v = (O, T2, A v,
s Ve ic ic
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where Aic = 2TT/kic is the ith mode cut-off wavelength. The modal
characteristic admittances are

ki/wu s TE modes
Yi = (5-4)
ws/ki . TM modes
The intrinsic wavenumber k may be complex if u and/or € are complex
to account for a lossy medium in the cavity. The e are normalized
modal vectors, so the modal orthogonality relationships are
o, i
JJ gi . g_j ds = (5-5)
S 1, i=13j

Here the surface of integration S is the cavity (waveguide) cross section.

To evaluate the aperture admittance (2-10) in the cavity region, we
consider a single expansion function Mn on the z=0 plane inside the
cavity. The only source in the cavity region is gn, hence the tangential
field produced by gn is of the form of (5-1) and (5-2). Using the bound-

ary condition Hn =-u X E and specializing (5-1) to z=0, we have

x

L8 E = g Aaidy X & (5-6)

Here the additional subscript n is placed on Ani to denote that it is
that due to M . Multiplying each side of (5~6) by u X e, and inte-
- 2 =j

grating over the cross section S, we obtain

[l n s o ff e eepue o
S

By orthogonality (5-5), all terms of the summation are zero except the

i=} term. Hence,

U TP
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Ani = J{ Mn "u X gids (5-8)
apert.

We have replaced the integral over S by one over the aperture because
Mn exists only in the aperture region.
The elements of the aperture admittance matrix (2-10) for the

cavity region are now given by

cav _ _ . ub _
e ] megas -9)

apert.

The 5: of (5-9) is given by (5-2) evaluated at z=0, so (5-9) becomes

cav

Ymn = - j ; AniYi cot(kid) [J Em *u X gids (5-10)
apert.
We now define the constants
Bmi = ff Em Cu, X e ds (5-11)

apert.

which are similar in form to Ani given by (5-8). Then the admittances
(5-10) are given by

cav
Y o i ; A4 B, Y, cot(kd) (5-12)

Hence, the elements of [YcaV] are linear combinations of the input wave-
guide admittances for each short-circuited waveguide mode.

Some specific quantities of interest in the solution are (a) the
equivalent magnetic current M, or tangential E in the aperture, (b) the
amplitude of some specific mode, and (c) the electric field intensity
at some point in the cavity. Once M is obtained, then quantities (b)

and (c) are easily obtained.

ol
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We have the equivalent magnetic current given by (2-5) where Vn

are the elements of 3, obtained from (2-14) specialized to the present

problem. This result is

hs cav

Vo= yPs 4+ yeavylopi

(5-13)

where the elements of 31 are given by (3-5). The modal amplitudes Ai
are obtained from (5-6) as it applies to the total magnetic current in

the cavity, which is -M, The result is

- = X -1/
L gAiEz & (5-14)

Again we multiply each side by u, x Ej’ and integrate over the cross

section S, as in (5-7), to obtain

apert.

Substituting for M from (2-5), and using (5-13), we have

A= - AV = -R[yDS 4+ yeavyTl 3t (5-16)
where A is the row vector with elements given by (5-8). Hence, the

-

measurement vector for obtaining mode amplitudes is the vector A.

Finally, to obtain the gt field at any point in the cavity, we
use (5-1) with the Ai given gy (5-16). At a frequency near resonance,
that is, where sin kjd 2 0 for some j, a good approximation to the
field (5-1) is given by only the jth term of (5-1), or

sin k, (d-z)

E, x-Ae (5-1.)

t i=3 sin kja_-
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If the cavity is truly loss free, then (5-17) seems to predict an
infinite field at resonance. This, however, is not correct, since
Aj - 0 as sin kjd + 0 giving a finite value for Et at resonance.

The excitation of the resonant mode must then be determined from the

orthogonality condition

JJ M-u xe ds=0 (5-18)

apert.
However, the theory for this special case will not be considered here,
since it requires considerable modification of the formulas of this

section.

5-2. APERTURE BACKED BY AN ARBITRARY CAVITY

When the cavity backing the aperture is of arbitrary shape, there
are several ways of calculating the field in the cavity. One way is
completely modal. This is the method used in this chapter. Another
way is a nonmodal approach, similar to that used in [2]. That method,
however, will not be considered here.

Figure 5-2 represents the cavity part of a problem of the type of

conductor

Fig. 5-2. Equlvalence for cavities of arbitrary shape.
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Fig. 5-1, except that the cavity 1is now of arbitrary shape. It is
desired to calculate the field E and H in the cavity region R, com-
pletely enclosed by a conducting surface S, and excited by the
equivalent current M over the aperture surface. In general, the
magnetic field in R can be represented as the sum of a curl-free
(irrotational) part BFE plus a divergence-free (solenoidal) part

ﬂéf, that is

H=H +H (5-19)

The division (5-19) is not necessarily unique, since part of the field

may be both curl-free and divergence-free. For simplicity, we re-

strict consideration to simply-bounded and simply-connected cavities.
The modal representation of the magnetic field in a cavity

bounded by a perfect electric conductor is available in textbooks

[3], [4]. The use of this representation for aperture problems is

summarized well in [5]. The divergence-free part of the field can be

represented in terms of resonant cavity modes ﬂi as

H (1)
gdf = juwe Z‘é 5 ” (-M) + H ds (5-20)
i

s =

Lk apert.

The.ﬂi are solutions to the eigenvalue problem

_ .2
YxVxH =kif, nR (5-21)

nxVx H, =0 on S (5-22)

The eigenvalues ki are real, and only ki > 0 are used in (5-20). The

eigenvectors Ei are also real, and orthonormal according to

oo M il i e el

S b At

I —




JJJ H o Ej ds = (5-23)
R 1 i=3

The Hy defined above are the usual resonant modes of time-harmonic
fields in the cavity.
The curl-free part of the field can be expressed in terms of

"static modes" as

cf _ _—_]___ - . _

AT % G, (® ” M) - ¢, ds (5-24)
apert
where

91 = - ywi (5-25)

2. _ 2 _
-V wi = viwi in R (5-26)

awi

el 0 on S (5-27)

The modal vectors G, satisfy (5-21) and (5-22) for ki = 0, that is,

i

for zero eigenvalue. Hence, we can think of k% = 0 as being an eigen-

value of infinite degeneracy. The G, are real and orthonormal accord-

_i
ing to
0 i#])
jJJ gi . gj ds = (5-28)
R 1 f=3

Also, since ﬂ?f is orthogonal to ﬂFf in general, we have

J” Gy * H ds =0 (5-29)
R

for all 1 and j. The total field in R is simply the sum of (5-20)

and (5-24) according to (5-19).

s

sttt

o s non
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There 1s an alternative form for (5-24) which is sometimes con-
venient, This is
f
B = - Wy (5-30)

where

1

=51l H (-m)y, ds (5-31)

i apert.

Here m is the magnetic charge associated with M according to the equa-

tion of continuity

V.M (5-32)

(SN
EIH

The wi are still solutions to the eigenvalue problem (5-26) and (5-27),

and orthonormal according to (5-28) where G, is given by (5-25). The

_.i

derivation of (5-31) from (5-24) involves substitution for Qj from

(5-25) and application of the divergence theorem to the integral over R.
As shorthand notation, we can define the set of modes {Ei; to be

{gi, ﬂi}, that is, to include all modes. Then the total magnetic ficld

can be written as

F (r)
jweZ 2 ” (-0« E, ds (5-33)
k
apert.
where 0 i# j
J'” F  + F, ds = (5-34)
R 1 1=
This is the form used in Sec. 8-13 of [1]. However, we must remember

that there are an infinite set of modes associated with the cigenvalue
=
ki 0.

To obtain the aperture admittance elements for the cavity region

we use (5-9) where ﬂb is now given by (5-33) with M replaced by Mn, or
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{ j
the sum of (5-20) and (5-24) with M replaced by En' The result is
cav 1 Z Z b&i bni
Y =—— ) a' a 6+ juwe —_ (5-35) 1
mn juwu i mi ni i ki _ k2 1
L where ‘
" a nM
1 ni -1 1
= ” | * G ds (5-36) .
{a'. apert. W 3
ni L ™ )
_ _ - 1
b M
ni -1
= ]J . Ei ds (5-37)
\ apert.
Lbni Ly‘n J

Once again we have the possibility that, for a loss-free cavity, one
or more terms of (5-35) can become infinite at rescnance, that is,
when k = kj. In the case of lossy cavities this does not occur, although
numerical problems may arise if the cavity 1is only slightly lossy.

The magnetic field produced by the nth expansion function is given
by substituting'yn into the sum of (5-20) and (5-24), or

b

_ =1 . ni =i _
HM) = T 7 a_ .G, + juwe ) -7 (5-38)
i T

where a , and bn are given by (5-36) and (5-37). The electric field

ni i
is obtained from (5-38) according to juweE = V ¥ H, resulting in

5 bog LBy
EM) =) R 2 (5-39)
I ki

Note that the first summation of (5-38) vanishes when (5-39) is

derived, since  « Ei = 0. Both E and H are linearly related to
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magnetic current. Remembering that the source in region b of the original
problem is -M, we can use the superposition (2-5) to obtain the total mag-—

netic and electric fields in the cavity as

H=-] Vv HM) (5-40)
n

E-=- g VEM) (5-41)

Here the elements of 6 are obtained from (2-14) in general. For the par-
ticular case of a cavity~backed aperture in a conducting plane, V is
given by (5-13) where [Ycav] now has the elements (5-35). 1Imn (5-40), the

coefficient of the jth static mode G4 is

a, =—=—JV a_ =37 (5-42)
Iojw oomoni o Jun

where a, is the row vector with elements anj given by (5~36). Using

A
(5-13) for 6, we have for the amplitude of the jth static mode

i [YPS 4 yeavytl gt (5-43)

Similarly, the coefficient of the jth resonator mode gj in (5-40) is

bj = :%955 y Vb . o= :%EEEJB v (5-44)
Wakfn P Pt
3 3
where Bj is the row vector with elements bnj given by (5-37). Again

using (5-13) for 3, we have for the amplitude of the jth resonator mode

hs cav,-1 21

—w€~
b, = b, IY "+ ¥ P 5-45
y 7 27 oyl ] (5-45)
3
-> > 2 .2
Hence, aj/jwu and -jwsbj/(k —kj) are the measurement vectors for deter-

mining a mode amplitude.
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In the vicinity of a resonant frequency in a relatively loss-

free cavity, only one term of (5-38) and (5-39) may suffice to approxi-

mate the field. For example, if k is near kj’ then
H~ b, H, 5-46
Hzb, W (5-46)
b, VXH
R R § -
E » Jue (5~47)

If the cavity is truly loss~free, then (5-47) appears to predict an

infinite field at resonance. Again this is not correct, since

) annj +~0as k > kj. In this case the excitation of the resonant mode
n

must be determined from the orthogonality condition

JJ M- Ej ds = 0 (5-48)

apert.

Again we will not consider this special case here, since comnsiderable

modification of the formulation is required.

5-3 DISCUSSION

A general formulation for a cavity-backed aperture in an infinite
conducting plane has been given in terms of generalized network parameters.
The approach is also valid for a cavity-backed aperture in a conducting
body of arbitrary shape, but then the calculation of the excitation and/or
the measurement vectors is more difficult.

Two interesting specializations of the general theory are (a) the

low frequency case where cavity dimensions are small compared to wavelength




g R

and (b) the resonant case, particularly in the vicinity of the first

resonance. It is hoped that the general theory can be simplified for
these cases, allowing us to derive relatively simple equivalent circuits.

These topics require further investigation.
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Chapter VI

ELECTROMAGNETIC TRANSMISSION THROUGH NARROW SLOTS

IN THICK CONDUCTING SCREENS

6-1 TINTRODUCTION

The first accurate treatment of electromagnetic coupling through
small holes was for zero-thickness conductors, and used the concept of
aperture polarizability [1], [2]. This theory has found extensive appli-
cation in the literature (see [3] for a bibliography). When the aperture
becomes larger and/or the conductor has thickness, the polarizability
concept becomes inadequate and the generalized admittance concept should
be used. In this chapter we apply the admittance concept to narrow,
infinitely long slots (sometimes called slits) in a conducting plane of
finite thickness. The concepts we use are general, applying also to
three-dimensional problems, but we here consider only the two-dimensional
case.

The problem of a slot in a thick conducting screen has been con-
sidered by several methéds (see [4] for a bibliography). It was treated
by the generalized admittance concept for the TE (transverse electric
to the slot axis) case in [4]. A similar solution for the TM (transverse
magnetic to the slot axis) case can be found in [5]. For narrow slots
in thick conductors, only the transmission line mode, which is 2 TE mode,
can propagate through the slot region. All higher order TE modes, and
all T™™ modes, are cut off. Hence, we restrict explicit consideration
to the TE case. The solution used is basically a simplification of the

general solution [4] for the narrow slot. This results in relatively
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simple formulas, and a simple equivalent circuit, for narrow slots in

conducting screens of finite thickness.

6~2 FORMULATION OF THE PROBLEM

The problem to be considered is shown in Fig. 6-~1, which represents

the cross section of a conducting screen of thickness d in which a slot

Y
tw
J‘ conductor
g
region o e——d —
f‘co‘ﬂ ]
' region b | T
HFpr€p | w
a1
|
conductor
| PO
x=0 x=d

regionc
MHecs €e

Fig. 6~1. A uniform slot of width w in a perfectly conducting

screen of thickness d.
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of uniform width w is cut. The left-hand half space (x < 0) 1is called
region a, the uniform slot region (0 < x < d, 0 < y < w) is called
region b, and the right-hand half space (x > d) is called region c. The

boundary common to regions a and b is called the aperture A The

1

boundary common to regions b and ¢ is called the aperture A Regions

5
a, b, and ¢ are each filled with homogeneous media of constitutive
parameters (ua, Ea), (ub, Eb), and (uc, CC) respectively. Each u and €
can be considered complex to account for dissipation. The excitation
is due to known sources ii and ﬂi in region a. Tt is desired to obtain
a solution for the field in each region, and for the power transmitted
into region c.

As described in Chapter II, the equivalence principle can be used to
divide the original problem into three equivalent parts, as shown in

Fig. 6-2. 1In Fig. 6-2a, we have the original sources g}, gl, plus the

equivalent magnetic current Ml’ where

M =%xE (6-1)

over the aperture region Al’ all radiating in the presence of a complevre

conductor (aperture A, shorted). In (6~1), X is the x-directed unit vector,

1

normal to Al’ and E is the electric field in the aperture A, in the original

1
problem. 1In Fig. 6-2b, we have the equivalent magnetic currents —Ml, given

by (6-1), over Al’ and —52, given by

M, =-%xE (6-2)

over the aperture region A2, all radiating in the presence of a conductor

completely enclosing the rectangular region b (both apertures shorted).




77

|
i
| . i
/ Jm' ——conducting plone ]
/ _ zero field ;
M, ,7 A,

region g +-—————X
Far€,o |
j

x=sQ0

{a) Equivalence for regicn a

TSPy Y

Y
| |
(ChW) (d,w) i
. regionb rectangular 4
zero field r-M' -le/ conducring 4
o€, cylinder '
(0,0) (d,0) X
(b) Equivalence for region b.
conducting —__|
plane .
region ¢
+
Az er
T X
zero field
Her€e
xad

{(c) Equivalence for region c.

Fig. 6-2. The problem divided into three equivalent parts.
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In (6-2), the unit vector X is normal to AZ’ and E is the electric field
in the aperture A2 in the original problem. Finally, in Fig. 6-2¢c, we

have the equivalent magnetic current EQ, given by (6-2), over the aper-
ture region AZ’ radiating in the presence of a complete conducting plane

(aperture A, shorted).

2

The use of M, in Fig. 6-2a and -M, in Fig. 6-2b ensures the conti-

1 1
nuity of the tangential components of E across éhe aperture Al' The use of
-M, in Fig. 6-2b and M, in Fig. 6~2c ensures the continuity of the tan-

gential components of E across the aperture A The remaining boundary

9
conditions to be enforced are the continuity of tangential components of

H across A1 and AZ' By the method used in [4], we obtain the following

two operator equations:

a b b _ .ScC -
_Et (]5_’[_1) - ﬂt Q'i_l) - ﬁt (Ez) - E!: over AJ_ (6 3
-2y - ®P ) - BS@) = 0 over A (6-4)

-t 1 ~t 2 —t 2 2

Here gi(yq) is the operator which gives the tangential component of H due

to the current ﬂq radiating in region p, with all apertures shorted. E:C

is the tangential component of H due to the impressed sources gi, Mi in

region a with aperture A, shorted. In terms of the current g?c which

exists on the shorted aperture A, in Fig. 6-2a,

1
- _)/_E_ X ;]- (6—5)

In Chapter IT, ﬁsc was called the field due to the impressed sources

and denoted by ﬂl. Others [6] have called it the generator field and

denoted it by H .
B




A convenient way to reduce the operator equations (6-3) and (6-4)
to matrix equations 1s the method of moments [7]. The procedure can
be summarized as follows. Define sets of expansion functions {Eln} in

A1 and {ﬁzn} in A2, and express the equivalent magnetic currents as

N

Moo= loVi My, (6-6)
n=1
Y,

!2 - Z V2n MZn (6-7)
n=1

where Vln and V2n are coefficients to be determined. Define a symmetric

product for each slot as
\J

<A, B> = l A . Bdy (6-8)

where q = 1 or 2. The integrand in (6-8) 1s evaluated at x = 0 when
q=1and at x =d when q = 2. Define sets of testing functions

{gim} in A) and (W, }in A). Substitute (6-6) and (6-7) into (6-3)

9
and (6-4), and test the resultant equations with each Elm’ m=1,2,...,N1,
and Ezm, m=1,2,...,N2. The result is
b b i
[Yil]vl + [Yll]Vl + [le]?z =1 (6-9)
‘b -
[Ygl]ﬁl ¥ [0V, + [¥5,), = (6-10)
where
1 T p -
[qu] [ <wqm, Ht(Mm)>q]N < N (6-11)
q r
>
Vr = [Vrn]er 1 (6-12)
S PO LN (6-13)
Im> "t "1°'N_ x1

1

Gaal L o

Ll
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The matrices [er] are called the generalized admittances, the vectors
Vr are called the generalized voltages, and the vector fi is called the
generalized source current. A solution to the problem is obtained by ]
solving the matrix equations (6-9) and (6-10) for Vl and 62, which deter-
mine the magnetic currents by (6-6) and (6-7). Once the equivalent
magnetic currents are known, the fields in each region can be obtained

from the equivalent problems of Fig. 6-2.

6-~3 SPECIALIZATION TO NARROW SLOTS 4

As noted in the introduction, rigorous solutions to the general
problem can be found in the literature. We here consider only an
approximation which, as we shall see, gilves highly accurate solutions
for narrow slots. We consider only the case of TE excitation because,
as noted earlier, all TM modes in a narrow slot region are cut off.

The approximate solution is basically a one-term moment solution
to the general problem. For a testing function in each aperture, we

choose the constant (integrated value unity)

(6-14)

£ [

Wjp =¥y -¥=2

This is the H field variation of the transmission line mode in region b,

and is orthogonal to all higher-order waveguide modes. For now, the

expansion function in each aperture

M=M= M=E £y (6-15)

will be left undefined as to its functional form f(y). However, so

that M excites the transmission line mode the same regardless of its

functional form, we require
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\"J i
J f(y) dy = 1 (6-16)
0

for all "trial functions" f(y). 1In other words, the net magnetic '

current is unity.

The general network equations (6-9) and (6~10) now reduce to scalar

equations
a b b . | i
Y Vl + Yllv1 + Y12V2 =1 (6-17) !
i
b b c _ :
Y21V1+ Y22v2 + Y V2 =0 (6-18) -
where 1
w b
a _ -1 PO - ]
Y = - J 2 _l_{t(ﬂ) dy (6-19) ;
]
0
is the aperture admittance of A1 looking into region a, and h
w
c _ -1 s . uC _
Y -w[ 2+ H D dy (6-20)
0
is the aperture admittance of A2 looking into region c. The matrix of '
admittances
Yb Yb ] Y d j |
11 12 ~3 ocot kb -JYOCSC kbd i
= (6-2])
Yb Yb -jY csc d -3Y cot k. d 1
21 22 %8¢ Ky, 0%t Ky :

is the two-port admittance matrix for a parallel-plate transmission line

of length d, characteristic admittance Y0 = l/wnb, and propagation constant

, where n. and k, are the intrinsic impedance and wave number of region h.
b P

b

The impressed current is




which is the average surface density of electric current over the

short-circuited aperture. The approximations to the equivalent

magnetic currents in the apertures A1 and A2 are now

M = VM and M) = VM (6~23)

respectively. The equivalent circuit for this approximation to the narrow
slot is shown in Fig. 6-3.

It is well-known that the aperture admittance of a thin slot open-~
ing into half space is insensitive to small variations in the tangential
electric field in the slot about its true value [8]. We here consider

three cases, all of which result in an aperture admittance of the form

v2 - nl)\ [7 - 2§ 1n(C k_w)] (6-24)
a a

for region a, and of the same form with all a's replaced by c¢'s for

A, Ag
- d

M4 Transmission Line
i G [
L e v L
+V

Fig. 6-3. Equivalent circuit for a narrow slot in a thick
conducting screen.

&
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region c¢. 1In (6-24), na, Xa, and ka are the intrinsic impedance, wave-
length, and wave number of medium a, respectively, and C is a constant
depending on the choice of f(y). If the tangential electric field in the

slot 1s assumed constant, then (8]

3/2

C=Y/2e X 0.1987 (6-25)

Here Y = 1.781... and e = 2.718... . If the tangential electric field

is assumed to be the quasi~static solution for a right-angle flange,

then [9]
C = vy/me = 0.2086 (6~-26)

Finally, if the tangential electric field is assumed to be the quasi-

static scolution for a slot in a zero~thickness screen, then [10]
C=vY/8 = 0.2226 (6-27)

Since C is in a logarithmic term in (6-24), it makes little difference
which value is chosen. However, so that our solution remains strictly
valid as the thickness d + 0, we choose (6-27).

A parameter of interest is the transfer admittance

-

=L -
Y, ; (6-28)

which allows one to calculate the strength of 52 = Vzg given the excita-
tion I1 of (6-22). From transmission line theory and circuit theory applied

to the equivalent circuit of Fig. 6-3, we obtain

Y

a c .
le ~(Y + Y )cos kbd - j(Yo +

ayc
v_ )sin kbd (6-29)
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The power transmitted through the aperture 1s equal to that dissipated

in Y¢ of the equivalent circuit, that is

= |v,|? Re(¥%) (6-30)

Ptrans 2|

In terms of the transfer admittance, this is

i

Y12

2
Re (Y) (6~31)

P
trans

where Ii is given by (6-22), Y., by (6-29), and Y© by (6-24) with a's

12
replaced by c's.
Now consider the case of a normally incident plane wave
—jkax
H  =H e (6-32)
Here the superscript ic denotes a wave in media a of infinite extent (no
conductor). The power incident on the aperture (per unit length in the

z direction) 1is then

~ 2
Pie = nalHol w (6-33)

The short-circuit magnetic field 1s twice the incident field on the con-

ductor, or

B¢ = 2H_ (6-34)

Hence, the impressed current li is, by (6-22),

i
I” = ZHO (6-35)

The transmission coefficient of the slot is defined as

P
T = F££§E§ (6-36)
inc




"IIIllll'l""""""'-""""""""'ll-F!l-""""'I!lllll""""""""'“

* 85
Now, substituting from (6-31), (6-33), and (6-35) into (6-36), we have
c
= 4 Re(Y) (6-37)
whn |Y |2
a'"12

If the plane wave is incident at some angle einc in the x-y plane measured

{ from the x axis, then the left-hand side of (6-37) becomes T cos Hinc

The transmission coefficient (6-37) depends on screen thickness d

only through the parameter Y In particular, it will be maximum when

12°

|Y12| is minimum. Consider the case of region b lossless, and denote the

aperture admittances by

Y2 = 6%+ 33 and Y =G + jBS (6-38)

We can now write the real and imaginary parts of Y as given by (6-29)

12

as

Re(Y

_ a c 1 a_.c a, .
1) = (6% + c%)cos k d + i (6?8° + ¢B%)sin k, d (6-39)

a,c a,c
u)sin k, d (6-40)

Y b
o

Im(le) = -(Ba + Bc)cos kbd - (Yo +

For narrow slots, we see from (6-24) that Ba >> Ga and BC > GC. Hence,
the coefficients of the trigonometric terms in (6-40) are much larger
than those in (6-39), and we can minimize |Y12| by setting Im(Y ,) = 0.
As w » 0, we retain only the dominant Y0 term in the coefficient of

sin kbd in (6-40). Then Im(le) = 0 when

a c
+
tan kbd T - (———”—B v B ) (6-41)
)
which is the condition for "slot resonance." Since B + B -~ v .

a first approximation to resonance is kbd ~ nmn, or




d x A

res

n
2

p n = 12,3, (6-42)

Here the subscript "res'" denotes "at resonance.”" Actually, the right-
hand side of (6-41) is a small negative number, hence resonance occurs
when d is slightly less than an integer number of half wavelengths in
region b. Assuming that tan kbd varies linearly in the vicinity of
each zero, we have

A

res nYO 2

) (6-43)

where n = 1,2,3,... . This is a better approximation to thé resonant
thickness than is (6-42).
We next wish to obtain the transmission coefficient at resonance.

Now cos kbd M (—l)n and sin kbd is small, hence from (6-39) we have

Re (Y 5 - -2 + ¢ (6-44)

)-a__—»
127 w ~»

c
At resonance, |Y12| = |Re(Y,,)| and Re(Y") = H/nckc. and (6-37) reduces
to
4
» (6-45)
res w0 a c,2
. wnanCAC(G +G)
If we introduce the parameter
Na Aa Ee
Vv = = — -(6-46)
n. A €
c ¢ a

and substitute for ¢ and G° as obtained from (6-24), then (6-45) can be

written as

Qkav
T - (6-47)
res w 0 w (1 + v)2

if medium a and medium ¢ are the same, v = 1 and (6-47) reduces to
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(Tw) 2N (6-48)

res w>0
The quantity Tw is the transmission width, or apparent width, of the slot.
The transmission width times the incident power density equals the power
transmitted by a unit length of the slot. Hence, when medium a and medium

c are the same, at resonance the transmission width of a narrow slot is 1/w
wavelengths, regardless of its actual width. When medium a and medium c are
different, the transmission width of a narrow slow at resonance can be ob-
tained from (6-47), where v is given by (6-46). Note also that (6-47) and
(6-48) are independent of the medium in region b, that is, the peak values
of T are independent of the medium in the slot. However, the positions

and widths of the peaks are a function of medium b, as is evident from

(6-43) with Yo = 1/wnb.

6-4 NUMERICAL RESULTS

Once the transfer admittance le is found for a given narrow slot,

we can then readily compute the field transmitted into the half-space

region c¢c. It is thus desirable to compare the results for le obtained

from the équivalent circuit formula (6-29) with results for le obtained

from the higher order moment solution of [4]. 1In the latter, six pulse
expansion functions were used on each aperture face A1 and A2 for all slot
#idths considered. These results are indicated at various points on the
curves in Figs. 6-4 to 6~8 by markers (circles, triangles, pluses, and
crosses). The solid lines represent results obtained directly from the
equivalent circuit model and were computed a‘ intervals of 0.0l wave-

lengths in regionb. For narrow slots, the parameters Y., and T, computed

12

from the approximate solution, are perilodic functions of d (screen thickness).

L TP OPY S
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They are only plotted for 0 < d/)\b < 2, where )\ 1is the wavelength in

b
the slot region b. The permeability of all regions is that of free
space and the permittivity of the different regions is specified for

the different cases.

The real and imaginary parts of le/Yo, where Y0 = l/wnb is the
characteristic admittance of the parallel-plate transmission line, are
shown in Fig. 6-4 for slot widths of 0.01)\o to 0.2%0, where Xo is the
wavelength of free space. Equation (6-28) was used for the higher order

moment solution in which the voltage V, becomes an integral over the

2

magnetic current gz. The two results are in excellent agreement as w

becomes small. Also, as expected from (6-29) and (6-24), le becomes
purely imaginary as w -+ 0. These computations indicate that the equi-
valent circuit gives highly accurate results for w < O.IXO, and good
results for 0.1>\0 < w < O.ZAO. For w > O.2Ao, the results obtained from
the equivalent circuit become increasingly inaccurate. This is to be
expected, since the half space is then no longer adequately repre-
sented by a lumped admittance.

The transmission coefficients for the same slots are shown in
Fig. 6-5, where the equivalent circuit results were obtained from (6-37).
For the higher order moment solution, Ptrans was obtained by the usual
multi-port network formula [4]. As w > 0, T becomes a maximum at so-
called resonant thicknesses, which approach multiples of Xb/2, as pre-
dicted by (6-42). The peak value of T for w = 0.01)\o in Fig. 6-5 is
T = 30.5 occurring at d/Ab = 0.47, 0.97, 1.47,... . This is in agree-

ment with the prediction that the transmission width Tw<*k0/ﬂ at values of d v

slightly less than integral multiples of Xb/2 as w ~ 0.
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Fig. 6-4. Plots of Re(le.Yo) and Im(le/Yo) vs. d/kb for e =€ =
= eo and width w = O.OlAo (circles), w = 0.05,\0 (triangles),

w = 0.1)\0 (pluses), and w = 0.2>\0 (crosses).
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Fig. 6-5. Plots of transmission ccefficient T vs. d/Xb for cases of
Fig. 6-4.Width w = O.Ol>\o (circles), w = O.OSAo (triangles),

w = 0.1\O (pluses), and w = 0.2>\O (crosses).

When the slot is loaded with different dielectrics, the

imaginary part of le is most affected. This is shown in Fig. 6-6 for a

slot of width w = 0.1 for ¢, = € , 5¢ , and 10c , where € 1is the
0 o 0 o o

b

permittivity of free space. As the material filling the slot becomes more
dense, the transmission resonances become narrower and occur closer to
multiples of ?b/2. This is shown in Fig. 6-7 for the slot of Fig. 6-6,

the result being in agreement with (6-43). Note that the heights of the

peaks, however, are the same.
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6~-6. Plots of Re(lelYo) and Im(le/Yo) vs. d/)\b for w = 0.1k0,

€, = ec =€, with various dielectrics filling the slot.

Cases shown are €y, = €, (circles), €, = 5¢, (triangles), .

and € = 10A° {(pluses).
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1
B

0.5 1.0

d/x,

Fig. 6-7. Plots of transmission coefficient T vs. d/)\b for the
case~ of Fig. 6-6. The dielectrics filling the slot

are €= € (circles), Eb = 560 (triangles), and

& = 1060 (pluses).

The effects of lossy material filling the slot are shown in
Fig. 6-8. Here the slot width is 0.05%0. The expected decay in the
transmission coefficient peaks is seen to occur with increasing screen
thickness d. Circles represent the lossless case eb = eo, triangles
represent a dielectric €y = (1-j0.01)so, that is, with Q factor = 100,
and pluses represent a dielectric €y = (1—j0.1)E°, that is, with Q factor
= 10. Note that loss does not affect the position of the resonances.

If the conductor has large but finite conductivity, the effect of

the conductor loss is similar to that of dielectric loss. For small

L P




d/\,

Fig. 6-8. Plots of transmission coefficient T vs. d/)\b for £, CC = ro,

w = O.OSAO,for lossy dielectric in the slot. Cases shown are
€ = € (circles), eb
eb = (l-jO.l)Eo (pluses).

= (1—j0.01)€o (triangles), and

losses, either conductor or dielectric, the principal effect is to change
the propagation constant of the parallel-plate transmission line mode from
purely imaginary to complex with a s ' nal part [11]. Equating the
attenuation constant for a parallel-plat. weguide with perfectly con-
ducting walls and lossy dielectric (¢ = €' - j€" and quality factor

Q = €'/e") to one with perfect dielectric and lossy conducting walls

(surface resistance R = vuu/20 ), we obtain
s cond

Q=

kMW
2R (6-49)

s

L
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Now the lossy conductor case behaves similarly to the lossy dielectric
case with Q factor given by (6-49). Note that Q is proportional to w,

meaning that for very narrow slots the losses due to conducting walls

become an important factor limiting the field penetration through slots

in conductors of resonant thickness.

6-5 CONCLUSTION

The validity of an equivalent circuit model for a narrow TE excited
slot in a thick conducting screen has been investigated. Tﬁe equivalent
circuit formulas for transfer admittance and transmission coefficient give
accurate results when compared to a higher order moment solution. When
the material filling the slot is dense enough to allow more than one propa-

gat ing mode, the equivalent circuit picture of Fig. 6-3 becomes more com-~

plicated. One must then consider a sequence of transmission lines con-
necting regions a and c¢ in which the higher order modes couple to one

another.

‘ An interesting result of this investigation is that Tw, the trans-
mission width of the slot, for a narrow slot at resonance, is independent

of actual slot width. This phenomenon is analogous to the phenomenon of

scattering by resonant scatters, or reception by resonant antennas. For
example, a short dipole resonated by an inductor has a scattering

cross section of 9/4m square wavelengths regardless of the actual size of
the dipole [12]. A short dipole resonated by an inductor and used as a
receiving antenna has an effective aperture of 3/87 square wavelengths

regardless of the actual size of the dipole [13].
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Chapter VII
RESONANT BEHAVIOR OF A SMALL APERTURE

BACKED BY A CONDUCTING BODY

7~1 TINTRODUCTION

The coupling of electromagnetic energy to wires or other conducting
objects through an aperture in a conducting wall is an important problem
in the theory of electromagnetic compatibility and interference. As an
approximation, some investigators have first solved the problem for the
tangential electric field in the aperture, and then taken this as a

secondary source for the field coupled to a wire [1]. This approach

neglects the effect of the wire on the electric field in the aperture,
which can be appreciable. Under certain conditions of resonance, the
power transmitted through an aperture can be orders of magnitude larger
when an object is near it than when no object is present.

Our approach is to first obtain the functional equations for the
problem using the equivalence principle (Sec. 3-5 of [2]), and then to
reduce these equations to matrix form via the method of moments [3]. The
various matrices are interpreted in terms of generalized network parame-
ters, such as voltages, currents, admittances, and impedances [3]. The
aperture admittance matrices of electrically small apertures are obtained
and discussed. An example of coupling through a capacitively loaded

aperture is given to illustrate the phenomenon of aperture resonance.

Perhaps the first accurate treatment of coupling through an aper- 1

ture to a wire was given by Butler and Umashankar ([4]. Later work by g

Butler considered the electrically small aperture and coupling to

—t bk Fiad o n
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objects other than wires [5]. He used Bethe-hole theory for the small
aperture but did not include a radiation term. He also did not look at
the resonance effects which we emphasize. Other work which treats
coupling to wires is that of Kajfez [6], Kajfez and Wilton [7], and lLee
and Yang [8]. These last three references deal with determining an
equivalent circuit for wires passing near small apertures. Again Bethe-
hole theory was used, radiation was not accounted for in the equivalent

circuit, and resonance effects were not considered.

7-2 FORMULATION OF THE PROBLEM

The general problem of coupling to a conducting body through an

aperture in a conducting wall is represented by Fig. 7-1. The wall

CONDUCTOR

APERTURE
A ——

CONDUCTING
80DY

REGION b

REGION o

Fig. 7-1. Two-region aperture problem with impressed sources Qi.Ml
in region a and conducting object in region h.
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divides space into two regions, called region a and region b. The exci-
tation is represented by impressed sources in region a, and the conduct-
ing body is in region b. The problem is primarily that of finding the
tangential electric field in the aperture and the current on the con-
ducting body, and secondarily that of finding the fields throughout space.

We use the equivalence principle (Section 1-6) to divide the problem
into two parts, as shown in Fig. 7-2. The field in region a remains
unchanged if the aperture is closed by a conductor and the equivalent sur-
face magnetic current

M=nxE (7-1)

is placed over the aperture region, where E is the electric field in the
aperture of the original problem and n is the unit normal pointing out-
ward. The original sources g?, gf must be kept in region a. This equiva-
lence is shown in Fig. 7-2a. The field in region b remains unchanged if
the aperture is closed by a conductor and the equivalent surface magnetic
current -M is placed over the aperture region. The current J on the con-
ducting body must be kept in region b. This equivalence is shown in

Fig. 7-2b.

The fact that M is used in Fig. 7-2a and -M is used in Fig. 7-2b
ensures -hat the tangential electric field is equal on each side of the
aperture region. We have two more boundary conditions to enforce:

(a) the tangential magnetic field must be equal on each side of the aper-
ture region, and (b) the tangential electric field must vanish on the
surface of the conducting budy. These two conditions give us two equa-

tions from which to calculate the unknown quantities M and J.

T VPPV
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i N
TJM‘ CONDUCTOR ,3
2 (APERTURE SHORTED) L

M
n o
1?
1
REGION o :

(o) EQUIVALENCE FOR REGION o

CONDUCTOR
(APERTURE SHORTED)

REGION b

(b) EQUIVALENCE FOR REGION b

Fig. 7-2. Original problem divided into two equivalent parts.
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To express these boundary conditions in equation form, we intro-
duce the following notation: Let the electric and magnetic fields in 1

region a be denoted
E* = 0 + E' (7-2) %
a a i
H® = HO(M) + H (7-3)

where g?(g), Eé(ﬂ) are the fields from M in Fig. 7-2a, and gi, g% are

the fields from g}, gi in Fig. 7-2a. Note that all fields are computed

Ly

with the aperture shorted. Similarly, let the electric and magnetic 1

fields in region b be denoted

EP(-M) + EP(D) (7-4)

tr3
1

Hb

B (W) + 1P () (7-5)

where g?(fﬂ), EP(fg) are the fields from -M in Fig. 7-2b, and EP(Q),
EP(Q) are the fields from J in Fig. 7-2b. Again, all fields are

computed with the aperture shorted.

To satisfy the boundary condition that the tangential component
of H must be continuous across the aperture, we equate tangential com-

ponents of (7-3) and (7-5), obtaining

) - HOD + HO(D) =+ H over A (7-6)

where A denotes the aperture region. The subscripts t denote the tan-
gential component over A, and we have used the linearity of the operator

to replace ﬂ:(—g) by -g:(g). To satisfy the boundary condition that the

tangent lal compor ent of E must vanish on the surface of the conducting

body, w. &>t 2 tangential component of (7-4) equal to zero, obtaining
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M -E Q) =0 over B (7-7)

where B denotes the conducting body surface. The subscripts t denote

the tangential component over B, and we have used the linearity of the
operator to replace EE(—&) by —gz(g). Equations (7-6) and (7-7) are
vector equations for determining the unknowns M and J which exist over
the surfaces A and B.

1 We next reduce (7-6) and (7-7) to matrix equations using the method
of moments [3]. For this, we define a set of expansion functions

{yn, n=1,2,..., NA} and express the magnetic current over A as

= -8)
M rZ\V“y“ (7-8

where Vn are coefficients to be determined. We define a set of expan-
sion functions {gn, n=1,2,...4 NB} and express the electric current
over B as

J=)11J (7-9)
n

where In are coefficients to be determined. We substitute (7-8) and
(7-9) into (7-6) and (7-7), use the linearity of the operators, and

obtain

a u -
SIVEM) - JVHM) )T ) =H (7-10)
n n n
over A, and
5 v _ -
[ Zvnﬁc(ﬁn)'llnﬁt(in)'o (7-11)
n n
over B, For A, we define a set of testing functions Jﬁm, m=1,2,..., N

A

and a symmetric prodact

<F, G>, = ” F + Gds (7-12)

-
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We take the symmetric product of (7-10) with each @m’ and use the linearity

of the symmetric product to obtain

. a b
- % Vn <ﬁm’ Ht(M‘n)>A - g Vn <ﬁm’ Ht(Mn)>A

(7-13)
A b i
> = < >
+ g In <Mm’ Ht(Jn) A ﬁm’ Ht A
m=1,2,..., NA. For B, we define a set of testing functions
{im, m=1,2,..., NB} and a symmetric product
<k, 6> = U F -G ds (7-14)
B

We take the symmetric product of (7-11) with each im’ and use the linearity
of the symmetric product to obtain

e b A b _ _
g vo<J s EC(M D>y rzl 1 <], E(3)> =0 (7-15)

m=1,2,..., NB' Equations (7~13) and (7-15) are now a set of algebraic
equations for determining the unknown coefficients Vn and In.
The above equations can be put into matrix notation as follows:

Define an admittance matrix for region a as

a ~ a
(Y7) = (<M, HEO4)>, 10 (7-16)
A A
and an admittance matrix for region b as
b, _ ~ b
D7) = ey B2 )y ey (7-17)

Note that these are exactly the same as defined in Chapter II for the




—

gt

problem with the wire absent. Define coupling matrices

b
[T) = [<R , B (J )>,] N, <N

and

A A b
= >
(81 = 1<y B>y oy

Define an impedance matrix for the wire object as

: P b
[2i = [<-3 s Eg(3 )%,

B NB><NB

Note that this is calculated in the presence of a complete conducting

boundary, that is, with the aperture shorted. Define a source vector

fi i

= (M Boaly w1
A
and coefficient vectors
-
v = ([v]
n NA><1
>
I = (1]
n NBX 1

Now the matrix equations equivalent to (7-13) and (7-15) are

Y2 + Y19 + 7 = ¢

>

(F]V+[z]T=9

-

The coefficient vectors V and 1 are obtained from the matrix solution

(7-18)

(7-19)

(7-20)

(7-21)

(7-22)

(7-23)

(7-24)

(7-25)

to (7-24) and (7-25). 1If we want only f, we can eliminate V from (7-25)

by using (7-24). Similarly, if we want only G, we can eliminate f from

(7-24) by using (7-25).

s el oam . e
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For emphasis, we restate that [Yb] is calculated for the aper-
ture as if the conducting body were not present, by methods outlined in
Chapter Il and carried out in detail for a rectangular aperture in a
plane conducting wall in Chapter II1. The matrix [Z] is calculated for
the conducting body as if the aperture were not present, that is, with
the aperture short circuited. Conceptually, the only new metrices re-
quired are the interaction matrices, [T} and [f]. If a Galerkin solu-
tion is used, that is, if {Mn} = {ﬁ“} and {gn} = {in}’ it then follows
from reciprocity (Sec. 3-8 of [2]) that [f] = ~ [T}, where the tilde

denotes transpose.

7-3 APERTURE ADMITTANCE MATRIX FOR SMALL HOLES

An aperture admittance matrix for electrically small apertures
can be obtained from the quasi-static solution to the integral equation.
The complete solution depends on both regions a and b, but the components
of the aperture admittance matrix depend only on one region. The usual
procedure is to solve for the aperture admittance of a canonical problem,
and then use this solution for other problems which differ only slightly
from the canonical problem. The basic canonical problem for aperture
admittance is that of an aperture in an infinite plane conducting screen,
excited by an incident plane wave. The electrostatic and magnetostatic
treatment of this problem {s known as Bethe-hole theory [10], [11].

The field produced by an aperture is defined to be the dif-
ference between that produced by the original sources in the présence

of a shorted aperture and that produced when the aperture is present.

———ma
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Except in the immediate vicinity of the aperture, the field of an elec-

trically small aperture in a conducting screen is that of a magnetic

dipole Py tangential to the screen plus that of an electric dipole P,

normal to the screen, both radiating with the aperture shorted. Let

the two half space regions on each side of the screen be denoted region
. sca sca

a and region b, with sources possibly in both regions. Let H » E

scb sch
and H s E be the fields produced by these sources when the aperture

is shorted. Then the difference field in region b is given by that from

the dipoles

]

[
21
S~
o]

2, m B -HT (7-26)

il
™
QI
—~
<]

|
tr1
~

P, e (E E (7-27)

where &m and &e are the tensor magnetic and electric polarizabilities

~ = -7
an = et 8 tantt (7-28)

- P
a, o, nn (7-29)

Here L and t,

diagonalize &m’ and n is the unit normal to the screen pointing into

are unit vectors tangential to the screen chosen to

region b. Analytical solutions for &m and &e exist for circular aper-

tures [10] and elliptical apertures [12]. Methods for computing ;m aud

&e for other shapes have been developed by De Meulenaere and Van Bladel [13],
and of measuring them by Cohn [14], [15]. For an aperture with an axis of

symmetry, t, is in the direction of this axis and t, is normal to it.
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The magnetic dipole moment By is that of a magnetic pole dipole
and the electric dipole moment P, is that of an electric charge dipole.
For our purposes it is more convenient to deal with current elements,

magnetic denoted by K% and electric denoted by IR. These are related

to Em and Ee by
KL = juwu Py (7-30)
I% = jw P, (7-31)
sca i

Finally, let sources exist only in region a, and denote g?cé, H

by E°,

E}, as was done in section 7-2 or in Chapter II. Then (7-30) and (7-31),

with substitutions from (7-26) and (7-27), become

K& = - jou &+ H(0) (7-32)

I8

jue G+ E'(0) (7-33)

The notation gi(d), g?(O) denotes the value of g} and ﬂ? at the center 0
of the aperture. These impressed fields are assumed to be approximately
constant over the aperture region.

We wish to translate the above results into those of aperture
admittance, and to augment them to include the effects of radiation.
Hence, for a small aperture, let che magnetic current be expressed by.a

three term expansion

M=VM +VM + V.M (7-34)

1-1 22 33

where M, is the quasi-static current which produces the effect of a

1

unit magnetic dipole KL = 1 in the 51 direction, 52 is the quasi-static
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current which produces the effect of a unit magnetic dipole K& = 1 in
the 52 direction, and 53 is the quasi-static current which produces the
effect of an electric dipole If = j in the n direction. (A real mag-
netic current gives rise to an imaginary I [2, p. 135].) We will not
need explicit formulas for M., M,, and Mi, but they can be obtained from
the Bethe-hole quasi-static solution.

The dipoles in (7-32) and (7-33) radiate in region b. 1In Fig. 7-2b,
-M radiates in region b. The dipole effects of -M will be equal to the

results (7-32) and (7-33) of Bethe-hole theory if the V's in (7-34) are

given by

i
V1 = jwuamlﬂl(O)

v, = jwuamZH;(O) (7-35)

v

i
3 - wsaeE3(0)

Here, the subscripts 1, 2, and 3 denote the ty» £y, and n directions,
respectively. For our canonical problem involving the infinite plane
conducting screen, T=9 in (7-24) so that the method of moments solution
for V reduces to

Vo= r® 4yt i (7-36)
For testing functions we use @m = gm, n=1,2,3 (Galerkin's method). We

then find

i .1
It = H, (0)

H;(O) (7-37)

i
| -3E5(0)
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Now for the admittance solution (7-36) to give the same result as Bethe-

hole theory, we must have

b 1 o | (7-38)
(Y2 + v°1 = 0
jwuaml
1
0 0
jwuamz .
-1
0 0 Jwea
e

The solution (7-36) gives coefficients Vn which, according to (7-34), give

the negative of the dipoles specified by (7-32) and (7-33).

kb s s

The aperture admittance matrix obtained from Bethe-hole theory neg-

lects radiation. In other words, it evaluates only the first term of a

WRTGRIOR. NN

frequency expansion for [Ya + Yb]. When there 1s an object near the aper-

ture, as in our original problem, the first (susceptive) term in [Ya + Yb] 1

can be cancelled by the interaction between the object and the aperture,
resulting in the incorrect prediction of infinite coefficients Vn, or infi-

nite power transmitted through the aperture. This defect in the Bethe-

hole theory can be corrected by evaluating the second (conductive) term of

a frequency expansion for [Ya + Yb]. Fortunately, this additional term is
easily obtained from the radiation field of the dipoles.
Note that, for M_ real, we have Re(Ya + Yb ) equal to 4 times
-n nn nn
the power radiated by Mn in free space. The factor of 4 arises because
a

- 4

gt(gn) in (7-16) is twice the magnetic field due to gn radiating in free

space and because [Ya + Yb] = 2[Ya]. The field distant from gn is assumed

to be a dipole field, hence we can use the results for a dipole. Using

) duality (Sec. 3-2 of [2]) and the formula for the power radiated by an

AR ettt i - PR
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electric dipole (Eq. 2-116 of {[2]), we have for a magnetic dipole

2
_2m |k :
P = n 3 l (7-39)
where N = YliI/€ is the intrinsic impedance of space and A is the wave-
length. Since 51 and gz each produce the effect of KL = 1, we have
Re[Y® + YP]. = Re[Y?® + YP]. = 4p = 2T (7-40)
11 22 3n>‘2

P

By similar reasoning, for the electric dipole If = j radiating on the

irod e inat

surface of an infinite conducting plane we obtain a term

b

Re[Y? + Yb]33 - 8mM (7-41)

32

These terms must be added to the imaginary terms in (7-38) to give the
aperture admittances corrected to account for radiation. The off-diagonal

elements in (7-38) remain zero because there is no cioss-power between any

o

pair of the quasi-static currents El’ MQ’ and ya.

For a half-space region alone the matrix elements are one-half those

evaluated above, or

hs hs
[Y "] = Y11 0 0 (7-42)
hs
0 Y22 0
hs
| © 0 Y34
where ]
hs 1 4m
Y., = +
11 ijuaml 3nX2
hs 1 4
Y, = + (7-473)
22 ijuamz 3nA2
yhe . -1 4mn
33 2jwsae 3>‘2.
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Of course, equations (7-43) are strictly valid only for a half space

region, but they are often a good approximation for other regions.

7-4 TRANSMITTED POWER

The complex power through the aperture is basically given by

PA=JJExﬂ*ogds
A

(7-44)
=JJ-}_4 -E* ds
A

where M is the equivalent magnetic current defined by (7-1), and H* is

the conjugate of the magnetic field in the aperture. Setting H = ﬂ?,

and using (7-5), we have

*
s |1 e+ @1 e
A
(7-45)
* *
=-”!'!b (l‘_i)d9+”£‘!'ﬂb (D) ds
A A
Substituting for M from (7-8) and for J from (7-9), we reduce this to
b*
= - * .
PA ) z van JJ M, - B (Mn) ds
m n
A
(7-46)

+

ERael

b*
JvIx I M «H (J) ds
mn -m - -
" A

If a Galerkin solution (M =M and J = J) is used, and if the expansion
-n - -n -n

PPy Sl Lo

P,

Y
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functions are real, then the negatives of the first integrals in (7-46)
*
are Y;n as defined by (7-17), and the second integrals in (7-46) are T;n

as defined by (7-18). Hence,

b*
= * *T* -
PA 2 z vmvnYmn * z z vanTmn (7-47)
mn mn
In matrix form this becomes
P, - VIYO)#0% + T[T)*I* (7-48)

where V is defined by (7-22), T by (7-23), and the tilde denotes transpose.
The last term in (7-48) can be put into another form by using (7-25)

to express T in terms of ¥. Since [f] = - [T], we have

-1

1= (27 %)WV (7-49)

Substituting this into (7-48), and combining the two matrix products, we

have

P, = V[Yb + TZ-lT]* v (7-50)

This suggests that we can define the effective aperture admittance into

region b to be

[Y:ff] = (¥° + 12715 (7-51)

Then (7-50) becomes the usual formula for power transmitted into an N-port
network. Note that the effective aperture admittance is that for region b
with the conducting body present. In this case we are viewing the con~
ducting body as part of the definition of region b, that is, part of the

environment into which the aperture radiates.
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We can see more clearly what can happen if the magnetic current
M in the aperture and the electric current J on the body are expressed i
in terms of a single expansion function each. These two quantities .

are then given by

M= VM and J=1J (7-52) ;
where only the complex amplitudes V and I are unknown. The matrix :
equations (7-24) and (7-25) are now reduced to the scalar equations

YW+ TL = HO? (7-53) :

1

ﬁ ~TV + ZI = 0 (7-54) 1

“ t g

where Y = Y + YP, T, and Z are given by (7-16, 17, 18, and 20) with ;

j the subscripts m and n each being 1 only. Expressing I in terms of ;

V from (7-54), and substituting into (7-53), we have | / ;

: ) ]
(Y + —Tz—)v = H:"a (7-55)

For electrically small apertures, normally [Im(Y)| >> Re(Y). We define

aperture-body resonance to be the case for which

Im(T2/2) = - Im(Y) , (7-56)

'1‘2 is real positive if the body and aperture are electrically small

and close to each other. For this case, at resonmance (7-55) reduces to

2
(G+LR—§) v_=H

|2]

8ca

N (7-57)

where the subscript r on Vr denotes "at aperture-body resonance,’

G = Re(Y), and R = Re(2).
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In the next section we show by example that the power transmitted
by an electrically small aperture backed by a conducting body can be muc
larger when the body is present than when the body is absent. As a limi

ing case, the second term in parenthesis in (7-55) may be small compared

113

h

t-

to the first term. When the aperture is far from resonance, we then have

H:ca
(

V= Im(Y)

When aperture-body resonance occurs, we have

sca
H
t

Ve * Re® (

We define the aperture Q as

Q = Im(Y) (

Re(Y)

Then, since M = vgl, we see that Et in the aperture can be increased at
most by the factor Q at aperture-body resonance. The power trénsmitted
by the aperture, (7-50), depends on ]Vlz, and hence may be increased at
most by QZ. As a word of caution, note that Q depends on M. as well as

1

the aperture size and shape.

7-5 AN EXAMPLE

As an example, consider a small rectangular aperture in a plane
conducting screen with a capacitor placed across its midpoint, as shown
in Fig. 7-3a. Take the excitation to be a plane wave normally incident
on the screen with Ei perpendicular to the longer axis of the slot. By

Babinet's principle (Sec. 7-12 of [2]), this problem is dual to that of

7-58)

7-59)

7-60)

on

il sttt Ot




114

CONDUCTING
SCREEN

H VI‘

=

(o) ' {b)

Fig. 7-3. (a) A capacitively loaded aperture and (b) the
complementary inductively loaded scatterer.

electromagnetic scattering from a conducting rectangular dipole, with
an inductor in series at its midpoint, as shown in Fig. 7-3b. It is
known that, for a loss-free resonated dipole, the back scattering cross
section is

g9x2 (7-61)

0 ==

4m

regardless of the size or shape of the dipole [16]. The result (7-61)
can, however, be greatly decreased by conductor losses for small dipoles.

We now show that a similar result holds for the transmission cross section

of a small resonated aperture.
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For a plane wave normally incident on an aperture, we define the
transmission coefficient T of the aperture to be the ratio of the power

transmitted through the aperture to the power incident on it, that is,

Re(PA)

=3 (7-62)
luol nA

Here A is the area of the aperture and Ho = HtcaIZ is the incident part

of Hi. For the problem of Fig. 7~3, the current on the "conducting body,"

that is, the capacitor, is in phase quadrature with the voltage across it.

Therefore the real part of the second term of (7-50) must be zero and,

for scalar V and Yb, it reduces to
Re(p,) = |v]% 6 (7-63)
The conductance Gb is Re(Yb) which, from (7-43), is seen to be

P - ““2 (7~64)
3nx

At resonance, V = Vr is given by (7-57) with the second term zero, or

H:ca H:ca
V. = = (7-65)
r G 2Gb

The second equality in (7-65) is due to the fact that G is the conductance

seen by the aperture opening into two half spaces in parallel, while Gb is

the conductance seen by the aperture looking into the single half space
region b. Using (7-63) and (7-65) in (7-62), we have
sca'2

t = (7-66)
nA 4 G

bl
2
|
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Finally, using (7-64) and the fact that H:ca = 2Ho, we obtain

T = —— =2 (7-67)

Hence, the transmission coefficient of an electrically small aperture
resonated by a capacitor is independent of the shape of the aperture.

The transmission area of the aperture is defined as the area for which
the incident wave contains the same power as transmitted by the aperture,

that is

T A= 3 (7-68)

Hence, the transmission area of a small aperture resonated by a capacitor
is 3A2/4ﬂ independent of the size and shape of the aperture. Of course,

conductor losses may greatly decrease (7-68) for very small apertures.

7-6 DISCUSSION

This chapter illustrates how a conducting object situated near a
small aperture in a conducting screen can resonate the aperture, thereby
increasing the power transmitted by that aperture over what it would
transmit with no object present. The¢ magnitude of the increase can be of
the order of Q2, where Q is the quality factor of the aperture current
being resonated. With no conductor losses Q becomes very large for
electrically small holes. For example, the magnetic dipole of a circular
aperture of radius R has a Q of 114 when R = A/20 and a Q of 14,200 when
R = A/100. These values of Q were obtained from (7-60), (7-43), and,

as given in [5], O = (4/3)R3. When losses are included, we can expect

Q to be limited to the order of a few hundred at radio frequencies.




The susceptance of the magnetic dipole mode for a small aperture

is inductivr., and requires the coupling of a capacitive susceptance from
the backing object for resonance. In the example chosen, we obtained
this required susceptance by capacitively loading the slot. We used a
lumped load, but longer wires can produce this capacitive susceptance
without lumped loads. For example, a straight wire of length 2 slightly
less than a half wavelength (a wire dipole) produces a capacitive sus-
ceptance. If region b is a cavity, it will reflect a capacitive sus-
ceptance at some frequencies and an inductive susceptance at other fre-
quencies. The reason we chose a lumped capacitive load was to show that
aperture-conductor resonance is possible even if all dimensions are
electrically small.

Another point that we wish to emphasize is that Bethe-hole theory
should assume that the form of the aperture field remains almosr the same
as in the canonical problem of a small aperture in a plane 9{ieen, but
not its amplitude and phase. If this 1s not recognized, order of magni-
tude errors may result when the aperture interacts with other objects.
Also, the concept of small-aperture polarizability should be generalized
to that of aperture admittance by including a radiation conductance term.
If this is not done, infinities in the aperture power transmitted may occur.

The result that the transmission cross section of a small aperture
resonated by a capacitive load is independent of the size and shape of the
aperture is not unexpected, since similar results have been obtained in

other transmission problems. For example, the transmission width of a

narrow infinitely long slot in a thick conductor at resonance is A/m,

e -
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regardless of the actual slot width, as shown in Chapter VI, Of course,
this is for an ideal loss-free problem. Conductor losses can significantly
decrease the aperture transmission cross section for apertures in actual
conductors.

The simplest way to resonate a small aperture is to connect a
capacitor directly across the center of the aperture, as was done in the
example. This is an analogue to the problem of connecting an inductor
in series with a short dipole scatterer. When the aperture is in a shield,
we obviously do not want to resonate the aperture. However, when a broad
spectrum of frequencies is present, such as in an electromagnetic impulse,
an aperture-body system will possibly resonate at some frequencies of
interest. This possibility should be taken into account in the engineering

analysis of such a system.

7-7 REFERENCES FOR CHAPTER VII

fi1] J-L Lin, W. L. Curtis, and M. C. Vincent, "Electromagnetic Coupling
to a Cable through Apertures,”" IEEE Trans., vol. AP-24, pp. 198-203,
March 1976.

[2] R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill
Book Co., New York, 1961.

[3] R. F. Harrington, Field Computation by Moment Methods, The Macmillan
Co., New York, 1968.

[4] C. M. Butler and K. R. Umashankar, "Electromagnetic Excitation of a
Wire through an Aperture-Perforated Conducting Screen,' IEEE Trans.,
vol. AP-24, pp. 456-462, July 1976.

[5] C. M. Butler, "Investigation of a Scatterer Coupled to an Aperture
fn a Conducting Screen," [EE Proc., vol. 127, pt. H, pp. 161-169,
June 1980.




(6}

[7]

[8]

[91

(10]

(11]

[12]

[13]

(14]

[15]

[16]

B

119

D. Kajfez, "Excitation of a Terminated TEM Transmission Line through

a Small Aperture,’”" Report AFWL-TR-74-195, Contract F29601-74-C-0010
between the Air Force Weapons Laboratory, Kirtland AFB, NM 87117,

and the University of Mississippi, Department of Electrical Engineering,
University, MS 38677, August 1975.

D. Kajfez and D. R. Wilton, "Small Aperture on a Multiconductor
Transmission Line Filled with Inhomogeneous Dielectrics,' Interaction
Note 347 (Editor, C. Baum, AFWL, Kirtland AFB, NM 87117), University
of Mississippi, University, MS 38677, November 1977.

K.S.H. Lee and F. C. Yang, "A Wire Passing by a circular Aperture in
an Infinite Ground Plane,'" Interaction Note 317 (Editor, C. Baum,
AFWL, Kirtland AFB, NM 87117), Dikewood Corporation, Los Angeles, CA
90024, February 1977.

R. F. Harrington and J. R. Mautz, "Elegtromagnetic Transmission through
an Aperture in a Conducting Plane," AEU (Germany), vol. 31, pp. 81-87,
February 1977.

H. A. Bethe, '"Theory of Diffraction by Small Holes,'" Phys. Rev.,
vol. 66, pp. 163-182, October 1944.

C. J. Bouwkamp, ""On Bethe's Theory of Diffraction by Small Holes,"
Philips Res. Repts., vol. 53, pp. 321-332, October 1950.

R. E. Collin, Field Theory of Guided Waves, McGraw-Hill Boouk Co.,
New York, pp. 294-298, 1960.

F. De Meulenaere and J. Van Bladel, '"Polarizability of Some Small
Apertures," IEEE Trans., vol. AP-25, No. 2, pp. 198-205, March 1977.

S. B. Cohn, "Determination of Aperture Parameters by Electrolytic-Tank
Measurements,'" Proc. I.R.E., vol. 39, pp. 1416-1421, November 1951.

S. B. Cohn, "The Electric Polarizability of Apertures of Arbitrary
Shape,"”" Proc. I.R.E., vol. 40, pp. 1069-1071, September 1952.

R. F. Harrington, '"Small Resonant Scatterers and their Use for
Field Measurements," IRE Trans., vol. MTT-10, pp. 165-174, May 1962.




MISSION
of
Rome Avr Development Center

RADC plans and executes neseanch, development, test and
selected acquisition programs in suppont 0§ Command, Contrnol
Communications and Intelligence (C31) activities. Technical
and engineerning support within areas 0f technical competence
48 provided to ESD Program Offices (POs) and othern ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and contrnol, Aur-~
vedllance of ground and aerospace objects, intelligence data
collection and handling, information system technology,
Lonosphernic propagation, solid state sciences, microwave
physics and electronic neliability, maintainability and
compatibility.

3

:






